我正在运行MNIST示例,并对图层进行了一些手动更改。虽然训练一切都很好,但最终测试精度达到了99%。我现在正在尝试使用pycaffe在python中使用生成的模型,并遵循给定here的步骤。我想计算混淆矩阵,所以我从LMDB逐个循环测试图像,然后运行网络。这是代码:
net = caffe.Net(args.proto, args.model, caffe.TEST)
...
datum = caffe.proto.caffe_pb2.Datum()
datum.ParseFromString(value)
label = int(datum.label)
image = caffe.io.datum_to_array(datum).astype(np.uint8)
...
net.blobs['data'].reshape(1, 1, 28, 28) # Greyscale 28x28 images
net.blobs['data'].data[...] = image
net.forward()
# Get predicted label
print net.blobs['label'].data[0] # use this later for confusion matrix
这是我的网络定义原型
name: "MNISTNet"
layer {
name: "mnist"
type: "Data"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
scale: 0.00390625
}
data_param {
source: "train_lmdb"
batch_size: 64
backend: LMDB
}
}
layer {
name: "mnist"
type: "Data"
top: "data"
top: "label"
include {
phase: TEST
}
transform_param {
scale: 0.00390625
}
data_param {
source: "test_lmdb"
batch_size: 100
backend: LMDB
}
}
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
convolution_param {
num_output: 20
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "conv1"
top: "conv1"
}
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv2"
type: "Convolution"
bottom: "pool1"
top: "conv2"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
convolution_param {
num_output: 50
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu2"
type: "ReLU"
bottom: "conv2"
top: "conv2"
}
layer {
name: "pool2"
type: "Pooling"
bottom: "conv2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "fc1"
type: "InnerProduct"
bottom: "pool2"
top: "fc1"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
inner_product_param {
num_output: 500
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu3"
type: "ReLU"
bottom: "fc1"
top: "fc1"
}
layer {
name: "fc2"
type: "InnerProduct"
bottom: "fc1"
top: "fc2"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
inner_product_param {
num_output: 10
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "fc2"
bottom: "label"
}
layer {
name: "accuracy"
type: "Accuracy"
bottom: "fc2"
bottom: "label"
top: "accuracy"
include {
phase: TEST
}
}
请注意,测试批量大小为100,这就是我需要在python代码中重新整形的原因。现在,假设我将测试批量大小更改为1,完全相同的python代码打印出不同的(并且大多数是正确的)预测类标签。因此,以批量大小1运行的代码产生预期结果,准确度大约为99%,而批量大小100则非常糟糕。 但是,基于Imagenet pycaffe教程,我看不出我做错了什么。作为最后的手段,我可以创建一个批量大小为1的原型文本的副本进行测试,并在我的python代码中使用,并在训练时使用原始的,但这并不理想。
此外,我不认为它应该是预处理的问题,因为它不能解释为什么它适用于批量大小1。
任何指示赞赏!