TensorFlow单词嵌入的双向LSTM编码

时间:2016-04-09 10:37:33

标签: python tensorflow

我有一个嵌入矩阵的单词,其中包含每个单词的向量。我试图使用TensorFlow在给定嵌入向量的情况下获得每个单词的双向LSTM编码。不幸的是,我收到以下错误消息:

  

ValueError:形状(1,125)和()必须具有相同的等级   异常TypeError:TypeError("' NoneType'对象不可调用",)被忽略

以下是我使用的代码:

     # Declare max number of words in a sentence
    self.max_len = 100
    # Declare number of dimensions for word embedding vectors
    self.wdims = 100

     # Indices of words in the sentence
    self.wrd_holder = tf.placeholder(tf.int32, [self.max_len])
    # Embedding Matrix
    wrd_lookup = tf.Variable(tf.truncated_normal([len(vocab)+3, self.wdims], stddev=1.0 / np.sqrt(self.wdims)))

     # Declare forward and backward cells
    forward  = rnn_cell.LSTMCell(125, (self.wdims))
    backward = rnn_cell.LSTMCell(125, (self.wdims))

     # Perform lookup
    wrd_embd = tf.nn.embedding_lookup(wrd_lookup, self.wrd_holder)
    embd = tf.split(0, self.max_len, wrd_embd)

     # run bidirectional LSTM
    boutput = rnn.bidirectional_rnn(forward, backward, embd, dtype=tf.float32, sequence_length=self.max_len)

1 个答案:

答案 0 :(得分:2)

传递给rnn的序列长度必须是长度批量大小的向量。