根据价值和时间过滤熊猫数据框

时间:2016-04-08 22:03:58

标签: python pandas filter

我有像这样的熊猫数据框

2011-5-5 12:43               noEvent          CarA      otherColumns...
2011-5-5 12:45               noEvent          CarA          ...
2011-5-5 12:49               EVENT            CarA          ...
2011-5-5 12:51               noEvent          CarA          ...
(no data - jumps in time)
2011-5-6 12:52               EVENT            CarA          ...
2011-5-6 12:59               noEvent          CarA          ...
2011-5-6 13:00               noEvent          CarA          ...
2011-5-5 12:43               noEvent          CarB          ...
2011-5-5 12:45               noEvent          CarB          ...
2011-5-5 12:49               noEvent          CarB          ...
2011-5-5 12:51               noEvent          CarB          ...
(no data - jumps in time)
2011-5-6 12:52               noEvent          CarB          ...
2011-5-6 12:52               EVENT            CarB          ...
2011-5-6 13:00               noEvent          CarB          ...

说明:

  • 时间戳列不是线性间隔
  • 有2辆车,A和B. A的事件独立于B的事件

我需要执行一些计算 + - 发生事件前后2分钟以及每辆车。

要做到这一点,我很困惑......如何过滤这个数据框?

期望的结果将如下所示

-2min
2011-5-5 12:49               EVENT            CarA          ...
+2min

-2min
2011-5-6 12:52               EVENT            CarA          ...
+2min

-2min
2011-5-6 12:52               EVENT            CarB          ...
+2min

一些信息:

  • 您无法混合CarA和CarB的活动
  • 将来,汽车数量可达数十万

我不知道从哪里开始......

  • 我可以使用哪些功能?
  • 如何将事件分组为“块”以便分别处理每4分钟的记录块?

2 个答案:

答案 0 :(得分:1)

首先按Car列分组并按如下方式处理每个组:

首先创建测试数据:

import pandas as pd
import numpy as np

np.random.seed(1)
idx = pd.date_range("2016-03-01 10:00:00", "2016-03-01 20:00:00", freq="S")
idx = idx[np.random.randint(0, len(idx), 10000)].sort_values()
evt = np.array(["no event", "event"])[(np.random.rand(len(idx)) < 0.0005).astype(int)]
df = pd.DataFrame({"event":evt, "value":np.random.randint(0, 10, len(evt))}, index=idx)

找到事件行和行索引+/- 10秒:

event_time = df.index[df.event == "event"]
delta = pd.Timedelta(10, unit="s")

start_idx = df.index.searchsorted(event_time - delta).tolist()
end_idx = df.index.searchsorted(event_time + delta).tolist()

创建掩码数组:

mask = np.zeros(df.shape[0], dtype=bool)
evt_id = np.zeros(df.shape[0], dtype=int)
for i, (s, e) in enumerate(zip(start_idx, end_idx)):
    mask[s:e] = True
    evt_id[s:e] = i

使用mask数组来过滤行,这里我创建了一个event_id列来分组事件:

df_event = df[mask]
df_event["event_id"] = evt_id[mask]

输出:

                        event  value  event_id
2016-03-01 13:51:48  no event      0         0
2016-03-01 13:51:51     event      8         0
2016-03-01 13:51:53  no event      3         0
2016-03-01 13:52:00  no event      1         0
2016-03-01 14:21:00  no event      2         1
2016-03-01 14:21:00  no event      5         1
2016-03-01 14:21:00  no event      0         1
2016-03-01 14:21:02  no event      1         1
2016-03-01 14:21:04  no event      2         1
2016-03-01 14:21:06  no event      0         1
2016-03-01 14:21:07     event      1         1
2016-03-01 14:21:16  no event      1         1
2016-03-01 14:21:16  no event      9         1
2016-03-01 15:09:42  no event      1         2
2016-03-01 15:09:49     event      7         2
2016-03-01 15:09:54  no event      3         2
2016-03-01 15:09:55  no event      3         2
2016-03-01 15:09:58  no event      5         2
2016-03-01 15:09:58  no event      9         2
2016-03-01 17:36:44  no event      8         3
2016-03-01 17:36:44  no event      2         3
2016-03-01 17:36:44  no event      9         3
2016-03-01 17:36:45  no event      2         3
2016-03-01 17:36:49     event      9         3
2016-03-01 17:36:50  no event      6         3
2016-03-01 17:36:54  no event      1         3
2016-03-01 17:36:56  no event      1         3
2016-03-01 18:51:37  no event      5         4
2016-03-01 18:51:37  no event      3         4
2016-03-01 18:51:42  no event      0         4
2016-03-01 18:51:47     event      9         4
2016-03-01 18:51:55  no event      4         4

答案 1 :(得分:1)

考虑交叉连接合并,比较所有事件过滤的数据帧和完整的数据帧。然后由同一辆汽车落在+/- 2分钟内的子集记录:

数据框设置(示例发布数据)

import pandas as pd
import datetime

df = pd.DataFrame({'Date': ['5/5/2011 12:43', '5/5/2011 12:45', '5/5/2011 12:49',
                            '5/5/2011 12:51', '5/6/2011 12:52', '5/6/2011 12:59', 
                            '5/6/2011 13:00', '5/5/2011 12:43', '5/5/2011 12:45', 
                            '5/5/2011 12:49', '5/5/2011 12:51', '5/6/2011 12:52',
                            '5/6/2011 12:52', '5/6/2011 13:00'],
                   'Event': ['noEvent', 'noEvent', 'EVENT', 'noEvent','EVENT',
                             'noEvent', 'noEvent', 'noEvent', 'noEvent', 'noEvent',
                             'noEvent', 'noEvent', 'EVENT', 'noEvent'],
                   'Car': ['CarA', 'CarA', 'CarA', 'CarA', 'CarA',
                           'CarA', 'CarA', 'CarB', 'CarB','CarB',
                           'CarB', 'CarB', 'CarB', 'CarB']})

    df['Date'] = pd.to_datetime(df['Date'])

#      Car                Date    Event
# 0   CarA 2011-05-05 12:43:00  noEvent
# 1   CarA 2011-05-05 12:45:00  noEvent
# 2   CarA 2011-05-05 12:49:00    EVENT
# 3   CarA 2011-05-05 12:51:00  noEvent
# 4   CarA 2011-05-06 12:52:00    EVENT
# 5   CarA 2011-05-06 12:59:00  noEvent
# 6   CarA 2011-05-06 13:00:00  noEvent
# 7   CarB 2011-05-05 12:43:00  noEvent
# 8   CarB 2011-05-05 12:45:00  noEvent
# 9   CarB 2011-05-05 12:49:00  noEvent
# 10  CarB 2011-05-05 12:51:00  noEvent
# 11  CarB 2011-05-06 12:52:00  noEvent
# 12  CarB 2011-05-06 12:52:00    EVENT
# 13  CarB 2011-05-06 13:00:00  noEvent

交叉连接(返回两个配对M X N之间的完整组合集)

df['key'] = 1

# EVENTS DF
eventsdf = df[df['Event']=='EVENT']

# CROSS JOIN DF
crossdf = pd.merge(df, eventsdf, on='key')

crossdf = crossdf[((crossdf['Date_x'] <= crossdf['Date_y'] 
                               + datetime.timedelta(minutes=2)) &
                   (crossdf['Date_x'] >= crossdf['Date_y'] 
                               - datetime.timedelta(minutes=2))) &
                   (crossdf['Car_x'] == crossdf['Car_y'])].sort_values('Date_x')

finaldf = crossdf[['Car_x', 'Date_x', 'Event_x']].drop_duplicates().sort_values('Car_x')                      
finaldf.columns = ['Car', 'Date', 'Event']

#      Car                Date    Event
# 6   CarA 2011-05-05 12:49:00    EVENT
# 9   CarA 2011-05-05 12:51:00  noEvent
# 13  CarA 2011-05-06 12:52:00    EVENT
# 35  CarB 2011-05-06 12:52:00  noEvent
# 38  CarB 2011-05-06 12:52:00    EVENT