我有时间系列。我想从第二天早上8点到早上7点59分分成24小时街区。我知道如何按日期进行分组,但我已尝试使用TimeGroupers和DateOffsets处理这8小时的偏移量。
答案 0 :(得分:2)
我认为您可以将Grouper
与参数base
:
print df
date name
0 2015-06-13 00:21:25 1
1 2015-06-14 01:00:25 2
2 2015-06-14 02:54:48 3
3 2015-06-15 14:38:15 2
4 2015-06-15 15:29:28 1
print df.groupby(pd.Grouper(key='date', freq='24h', base=8)).sum()
name
date
2015-06-12 08:00:00 1.0
2015-06-13 08:00:00 5.0
2015-06-14 08:00:00 NaN
2015-06-15 08:00:00 3.0
答案 1 :(得分:1)
或者@ jezrael的方法,您可以使用自定义分组器函数:
start_ts = '2016-01-01 07:59:59'
df = pd.DataFrame({'Date': pd.date_range(start_ts, freq='10min', periods=1000)})
def my_grouper(df, idx):
return df.ix[idx, 'Date'].date() if df.ix[idx, 'Date'].hour >= 8 else df.ix[idx, 'Date'].date() - pd.Timedelta('1day')
df.groupby(lambda x: my_grouper(df, x)).size()
测试:
In [468]: df.head()
Out[468]:
Date
0 2016-01-01 07:59:59
1 2016-01-01 08:09:59
2 2016-01-01 08:19:59
3 2016-01-01 08:29:59
4 2016-01-01 08:39:59
In [469]: df.tail()
Out[469]:
Date
995 2016-01-08 05:49:59
996 2016-01-08 05:59:59
997 2016-01-08 06:09:59
998 2016-01-08 06:19:59
999 2016-01-08 06:29:59
In [470]: df.groupby(lambda x: my_grouper(df, x)).size()
Out[470]:
2015-12-31 1
2016-01-01 144
2016-01-02 144
2016-01-03 144
2016-01-04 144
2016-01-05 144
2016-01-06 144
2016-01-07 135
dtype: int64