我的代码效率有些问题。基本上我的代码就像这样:
a = zeros(1,50000);
for n = 1:50000
a(n) = 10.*n - 5;
end
sum(a);
解决此矩阵所有元素之和的最快方法是什么?
答案 0 :(得分:3)
首先你要通过使它成为向量乘法来删除你的for循环:
tic
a = zeros(1,50000);
b = [1:50000];
a = 10.*b-5;
result = sum(a);
toc
Elapsed time is 0.008504 seconds.
另一种方法是简化您的操作,您将1乘以50000乘以10然后减去5然后取总和(这是一个数字),这相当于:
tic
result = sum(1:50000)*10 - 5*50000;
toc
Elapsed time is 0.003851 seconds.
或者如果你真的喜欢数学(这是一种纯粹的数学表达方法):
tic
result = (1+50000)*(50000/2)*10 - 5*50000;
toc
Elapsed time is 0.003702 seconds.
正如你所看到的,一点点数学可以比纯粹的高效编程做得更好,实际上,循环并不总是很慢,在你的情况下,循环实际上比矢量化方法更快:
tic
a = zeros(1,50000);
for n = 1:50000
a(n)=10.*n-5;
end
sum(a);
toc
Elapsed time is 0.006431 seconds.
让我们做一些时间并看看结果。底部提供了自己运行它的功能。大致执行时间execTime
以秒为单位,改进百分比impPercentage
以%为单位。
OSX 10.11.4上的R2016a
execTime impPercentage
__________ _____________
loop 0.00059336 0
vectorized 0.00014494 75.574
adiel 0.00010468 82.359
math 9.3659e-08 99.984
以下函数可用于生成输出。请注意,它需要最少的 R2013b 才能使用内置的timeit
- 函数和table
。
function timings
%feature('accel','on') %// commented out because it's undocumented
cycleCount = 100;
execTime = zeros(4,cycleCount);
names = {'loop';'vectorized';'adiel';'math'};
w = warning;
warning('off','MATLAB:timeit:HighOverhead');
for k = 1:cycleCount
execTime(1,k) = timeit(@()loop,1);
execTime(2,k) = timeit(@()vectorized,1);
execTime(3,k) = timeit(@()adiel,1);
execTime(4,k) = timeit(@()math,1);
end
warning(w);
execTime = min(execTime,[],2);
impPercentage = (1 - execTime/max(execTime)) * 100;
table(execTime,impPercentage,'RowNames',names)
function result = loop
a = zeros(1,50000);
for n = 1:50000
a(n) = 10.*n - 5;
end
result = sum(a);
function result = vectorized
b = 1:50000;
a = 10.*b - 5;
result = sum(a);
function result = adiel
result = sum(1:50000)*10 - 5*50000;
function result = math
result = (1+50000)*(50000/2)*10 - 5*50000;