boost :: circular_buffer如何处理覆盖移位

时间:2016-04-05 18:06:50

标签: c++ boost circular-buffer boost-interprocess

我有两个进程:一个生产者和一个“消费者”,它仍然将值保留在缓冲区中,它们将被覆盖。

但让消费者保持跟踪会带来一些问题。当缓冲区已满并且值被覆盖时,指向索引0的值是刚刚覆盖的值之前的值(即下一个最旧的值),刚刚插入的值是最后一个索引,移动所有值介于两者之间。

cb.push_back(0)
cb.push_back(1)
cb.push_back(2)

consumer reads to cb[1], cb[2] should == 2 when next read

cb.push_back(3)

cb[2] now == 1 effectively reading the old value

有趣的是,循环缓冲区上的迭代器确实保持相同的值,即使缓冲区开始被覆盖也是如此,除非在读取到达end()迭代器时它总是等于end()迭代器甚至在插入更多值之后,所以你在完成消费之后必须std::prev(iter, 1),然后在插入更多值之后再次读取时{〗{1}}这样你就不会读取值了已阅读。

1 个答案:

答案 0 :(得分:6)

我相信circular_buffer恰好存在于从你那里抽象迭代器定位。

缓冲区 循环的事实对你来说无关紧要:它只是一个队列接口。

在此示例中可以非常清楚地看到circular_buffer 如何使用http://www.boost.org/doc/libs/1_60_0/libs/circular_buffer/example/circular_buffer_sum_example.cpp

如果您想要某种程度的控制,那么

  • 想要使用更简单的容器原语并构建自己的逻辑
  • 你可以在循环缓冲区之上编写有界缓冲区。这里有一个完整的例子:http://www.boost.org/doc/libs/1_60_0/libs/circular_buffer/test/bounded_buffer_comparison.cpp

    explanation提及:

      

    有界缓冲区通常用于生产者 - 消费者模式[...]

         

    [...]

         

    有界缓冲区:: pop_back()方法不会删除项目,但该项目将保留在circular_buffer中,然后当circular_buffer为circular_buffer时,该项目将替换为新的项目(由生产者插入)充分。这种技术比通过调用circular_buffer的circular_buffer :: pop_back()方法显式删除项更有效。

听起来它应该会帮到你很多。

更新

这是一个适合使用共享内存的演示:

#define BOOST_CB_DISABLE_DEBUG

#include <boost/circular_buffer.hpp>
#include <boost/thread/thread.hpp>
#include <boost/call_traits.hpp>
#include <boost/bind.hpp>
#include <boost/interprocess/allocators/allocator.hpp>
#include <boost/interprocess/managed_shared_memory.hpp>
#include <boost/interprocess/sync/interprocess_condition.hpp>
#include <boost/interprocess/sync/interprocess_mutex.hpp>
#include <iostream>

const unsigned long QUEUE_SIZE     = 1000L;
const unsigned long TOTAL_ELEMENTS = QUEUE_SIZE * 1000L;

namespace bip = boost::interprocess;

template <class T, class Alloc, typename CV = boost::condition_variable, typename Mutex = boost::mutex>
class bounded_buffer {
public:
    typedef boost::circular_buffer<T, Alloc> container_type;
    typedef typename container_type::size_type                  size_type;
    typedef typename container_type::value_type                 value_type;
    typedef typename container_type::allocator_type             allocator_type;
    typedef typename boost::call_traits<value_type>::param_type param_type;

    bounded_buffer(size_type capacity, Alloc alloc = Alloc()) : m_unread(0), m_container(capacity, alloc) {}

    void push_front(param_type item) {
        boost::unique_lock<Mutex> lock(m_mutex);

        m_not_full.wait(lock, boost::bind(&bounded_buffer::is_not_full, this));
        m_container.push_front(item);
        ++m_unread;
        lock.unlock();

        m_not_empty.notify_one();
    }

    void pop_back(value_type* pItem) {
        boost::unique_lock<Mutex> lock(m_mutex);

        m_not_empty.wait(lock, boost::bind(&bounded_buffer::is_not_empty, this));
        *pItem = m_container[--m_unread];
        lock.unlock();

        m_not_full.notify_one();
    }

private:
    bounded_buffer(const bounded_buffer&);              // Disabled copy constructor
    bounded_buffer& operator = (const bounded_buffer&); // Disabled assign operator

    bool is_not_empty() const { return m_unread > 0; }
    bool is_not_full() const { return m_unread < m_container.capacity(); }

    size_type m_unread;
    container_type m_container;
    Mutex m_mutex;
    CV m_not_empty;
    CV m_not_full;
};

namespace Shared {
    using segment = bip::managed_shared_memory;
    using smgr    = segment::segment_manager;
    template <typename T> using alloc = bip::allocator<T, smgr>;
    template <typename T> using bounded_buffer = ::bounded_buffer<T, alloc<T>, bip::interprocess_condition, bip::interprocess_mutex >;
}

template<class Buffer>
class Consumer {

    typedef typename Buffer::value_type value_type;
    Buffer* m_container;
    value_type m_item;

public:
    Consumer(Buffer* buffer) : m_container(buffer) {}

    void operator()() {
        for (unsigned long i = 0L; i < TOTAL_ELEMENTS; ++i) {
            m_container->pop_back(&m_item);
        }
    }
};

template<class Buffer>
class Producer {

    typedef typename Buffer::value_type value_type;
    Buffer* m_container;

public:
    Producer(Buffer* buffer) : m_container(buffer) {}

    void operator()() {
        for (unsigned long i = 0L; i < TOTAL_ELEMENTS; ++i) {
            m_container->push_front(value_type());
        }
    }
};

int main(int argc, char**) {
    using Buffer = Shared::bounded_buffer<int>;

    if (argc>1) {
        std::cout << "Creating shared buffer\n";
        Shared::segment mem(bip::create_only, "test_bounded_buffer", 10<<20); // 10 MiB
        Buffer* buffer = mem.find_or_construct<Buffer>("shared_buffer")(QUEUE_SIZE, mem.get_segment_manager());

        assert(buffer);

        // Initialize the buffer with some values before launching producer and consumer threads.
        for (unsigned long i = QUEUE_SIZE / 2L; i > 0; --i) {
            buffer->push_front(BOOST_DEDUCED_TYPENAME Buffer::value_type());
        }

        std::cout << "running producer\n";
        Producer<Buffer> producer(buffer);
        boost::thread(producer).join();
    } else {
        std::cout << "Opening shared buffer\n";

        Shared::segment mem(bip::open_only, "test_bounded_buffer");
        Buffer* buffer = mem.find_or_construct<Buffer>("shared_buffer")(QUEUE_SIZE, mem.get_segment_manager());

        assert(buffer);

        std::cout << "running consumer\n";
        Consumer<Buffer> consumer(buffer);
        boost::thread(consumer).join();
    }
}

当你运行两个进程时:

time (./test producer & sleep .1; ./test; wait)
Creating shared buffer
running producer
Opening shared buffer
running consumer

real    0m0.594s
user    0m0.372s
sys 0m0.600s