我正在尝试使用matplotlib
和scipy
在Python中对Chau's Circuit进行建模,这涉及求解常微分方程组。
这已经完成了in matlab,我只是想在python中尝试这个问题。链接的matlab代码有点令人困惑;左边的代码似乎与解决描述Chua's Circuit的system of ode's(第3页,等式(2)(3)和(4))没什么关系,而右边的代码超出了那就是按组件对电路元件进行建模。
我不熟悉scipy的odeint
函数,因此我使用scipy cookbook中的一些示例作为指导。
任何人都可以帮我解决我的系统问题;为什么我会得到一个如下图:
与一个看起来像这样的人相反?
我的代码附在下面:
import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import odeint
def fV_1(V_1, G_a, G_b, V_b):
if V_1 < -V_b:
fV_1 = G_b*V_1+(G_b-G_a)*V_b
elif -V_b <= V_1 and V_1 <=V_b:
fV_1 = G_a*V_1
elif V_1 > V_b:
fV_1 = G_b*V_1+(G_a-G_b)*V_b
else:
print "Error!"
return fV_1
def ChuaDerivatives(state,t):
#unpack the state vector
V_1 = state[0]
V_2 = state[1]
I_3 = state[2]
#definition of constant parameters
L = 0.018 #H, or 18 mH
C_1 = 0.00000001 #F, or 10 nF
C_2 = 0.0000001 #F, or 100 nF
G_a = -0.000757576 #S, or -757.576 uS
G_b = -0.000409091 #S, or -409.091 uS
V_b = 1 #V (E)
G = 0.000550 #S, or 550 uS VARIABLE
#compute state derivatives
dV_1dt = (G/C_1)*(V_2-V_1)-(1/C_1)*fV_1(V_1, G_a, G_b, V_b)
dV_2dt = -(G/C_2)*(V_2-V_1)+(1/C_2)*I_3
dI_3dt = -(1/L)*V_2
#return state derivatives
return dV_1dt, dV_2dt, dI_3dt
#set up time series
state0 = [0.1, 0.1, 0.0001]
t = np.arange(0.0, 53.0, 0.1)
#populate state information
state = odeint(ChuaDerivatives, state0, t)
# do some fancy 3D plotting
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = fig.gca(projection='3d')
ax.plot(state[:,0],state[:,1],state[:,2])
ax.set_xlabel('V_1')
ax.set_ylabel('V_2')
ax.set_zlabel('I_3')
plt.show()
答案 0 :(得分:0)
所以我设法在一些摆弄后为自己解决;我正在解释odeint函数错误;更仔细地阅读docstring并从头开始阻止我按照困难的方法解决它。代码如下:
import numpy as np
import scipy.integrate as integrate
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
#define universal variables
c0 = 15.6
c1 = 1.0
c2 = 28.0
m0 = -1.143
m1 = -0.714
#just a little extra, quite unimportant
def f(x):
f = m1*x+(m0-m1)/2.0*(abs(x+1.0)-abs(x-1.0))
return f
#the actual function calculating
def dH_dt(H, t=0):
return np.array([c0*(H[1]-H[0]-f(H[0])),
c1*(H[0]-H[1]+H[2]),
-c2*H[1]])
#computational time steps
t = np.linspace(0, 30, 1000)
#x, y, and z initial conditions
H0 = [0.7, 0.0, 0.0]
H, infodict = integrate.odeint(dH_dt, H0, t, full_output=True)
print infodict['message']
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.plot(H[:,0], H[:,1], H[:,2])
plt.show()
这给了我这个: