我已经写了一篇关于河内塔问题的TLA +规范:
TEX
ASCII
------------------------------- MODULE Hanoi -------------------------------
EXTENDS Sequences, Integers
VARIABLE A, B, C
CanMove(x,y) == /\ Len(x) > 0
/\ IF Len(y) > 0 THEN Head(y) > Head(x) ELSE TRUE
Move(x,y,z) == /\ CanMove(x,y)
/\ x' = Tail(x)
/\ y' = <<Head(x)>> \o y
/\ z' = z
Invariant == C /= <<1,2,3>> \* When we win!
Init == /\ A = <<1,2,3>>
/\ B = <<>>
/\ C = <<>>
Next == \/ Move(A,B,C) \* Move A to B
\/ Move(A,C,B) \* Move A to C
\/ Move(B,A,C) \* Move B to A
\/ Move(B,C,A) \* Move B to C
\/ Move(C,A,B) \* Move C to A
\/ Move(C,B,A) \* Move C to B
=============================================================================
当我将Invariant
公式指定为不变量时,TLA模型检查器将为我解决这个难题。
我想让它稍微冗长一点,理想情况下,我不想将未更改的变量传递给Move()
,但我无法弄清楚如何。我想做的是写
Move(x,y) == /\ CanMove(x,y)
/\ x' = Tail(x)
/\ y' = <<Head(x)>> \o y
/\ UNCHANGED (Difference of and {A,B,C} and {y,x})
我如何用TLA语言表达这一点?
答案 0 :(得分:3)
而不是变量A,B,C,您应该有一个序列towers
,其中塔是索引。这也具有塔的数量通用的优点。您的Next
公式也会更短:
CanMove(i,j) == /\ Len(towers[i]) > 0
/\ Len(towers[j]) = 0 \/ Head(towers[j]) > Head(towers[i])
Move(i, j) == /\ CanMove(i, j)
/\ towers' = [towers EXCEPT ![i] = Tail(@),
![j] = <<Head(towers[i])>> \o @]
Init == towers = << <<1,2,3>>, <<>>, <<>> >> \* Or something more generic
Next == \E i, j \in DOMAIN towers: i /= j /\ Move(i, j)
或者,如果您想继续使用字母,可以使用记录而不是towers
的序列,而您在建议的规范中需要更改的是:
Init == towers = [a |-> <<1, 2, 3>>, b |-> <<>>, c |-> <<>>]