我有以下DataFrame:
January | February | March
-----------------------------
10 | 10 | 10
20 | 20 | 20
50 | 50 | 50
我试图在此处添加一列,这是每行值的总和。
January | February | March | TOTAL
----------------------------------
10 | 10 | 10 | 30
20 | 20 | 20 | 60
50 | 50 | 50 | 150
据我所知,所有内置的聚合函数似乎都是用于计算单列中的值。如何在每行的基础上跨列使用值(使用Scala)?
我已经到了
val newDf: DataFrame = df.select(colsToSum.map(col):_*).foreach ...
答案 0 :(得分:14)
你非常接近这个:
val newDf: DataFrame = df.select(colsToSum.map(col):_*).foreach ...
相反,试试这个:
val newDf = df.select(colsToSum.map(col).reduce((c1, c2) => c1 + c2) as "sum")
我认为这是最好的答案,因为它与使用硬编码的SQL查询的答案一样快,并且与使用UDF
的答案一样方便。这是两全其美的 - 我甚至没有添加完整的代码!
答案 1 :(得分:9)
或者使用Hugo的方法和示例,您可以创建一个UDF
来接收任意数量的列,并sum
全部列。
from functools import reduce
def superSum(*cols):
return reduce(lambda a, b: a + b, cols)
add = udf(superSum)
df.withColumn('total', add(*[df[x] for x in df.columns])).show()
+-------+--------+-----+-----+
|January|February|March|total|
+-------+--------+-----+-----+
| 10| 10| 10| 30|
| 20| 20| 20| 60|
+-------+--------+-----+-----+
答案 2 :(得分:8)
此代码在Python中,但可以轻松翻译:
# First we create a RDD in order to create a dataFrame:
rdd = sc.parallelize([(10, 10,10), (20, 20,20)])
df = rdd.toDF(['January', 'February', 'March'])
df.show()
# Here, we create a new column called 'TOTAL' which has results
# from add operation of columns df.January, df.February and df.March
df.withColumn('TOTAL', df.January + df.February + df.March).show()
输出:
+-------+--------+-----+
|January|February|March|
+-------+--------+-----+
| 10| 10| 10|
| 20| 20| 20|
+-------+--------+-----+
+-------+--------+-----+-----+
|January|February|March|TOTAL|
+-------+--------+-----+-----+
| 10| 10| 10| 30|
| 20| 20| 20| 60|
+-------+--------+-----+-----+
您还可以创建所需的用户定义函数,这里是Spark文档的链接: UserDefinedFunction (udf)
答案 3 :(得分:5)
使用动态列选择的Scala示例:
import sqlContext.implicits._
val rdd = sc.parallelize(Seq((10, 10, 10), (20, 20, 20)))
val df = rdd.toDF("January", "February", "March")
df.show()
+-------+--------+-----+
|January|February|March|
+-------+--------+-----+
| 10| 10| 10|
| 20| 20| 20|
+-------+--------+-----+
val sumDF = df.withColumn("TOTAL", df.columns.map(c => col(c)).reduce((c1, c2) => c1 + c2))
sumDF.show()
+-------+--------+-----+-----+
|January|February|March|TOTAL|
+-------+--------+-----+-----+
| 10| 10| 10| 30|
| 20| 20| 20| 60|
+-------+--------+-----+-----+
答案 4 :(得分:4)
你可以使用expr()。在scala中使用
df.withColumn("TOTAL", expr("January+February+March"))