我已经成功实施了Apple的Accelerate Framework中的BLAS库,以提高我的基本矢量和矩阵运算的性能。
对此感到满意,我把注意力转向vForce来矢量化我的基本数学函数。与天真的实现(使用自动编译器优化-Os)相比,我有点惊讶于性能相当差。
作为一个简单的基准测试,我运行了以下测试:Matrix是基本的Matrix类型,使用双指针,AccelerateMatrix是Matrix的子类,它使用vForce中的取幂函数:
Matrix A(vec_size);
AccelerateMatrix B(vec_size);
for (int i=0; i<vec_size;i++ ) {
A[i] = i;
B[i] = i;
}
double elapsed_time;
clock_t start = clock();
for(int i=0;i<reps;i++){
A.exp();
A.log();
}
clock_t stop = clock();
elapsed_time = (double)(stop-start)/CLOCKS_PER_SEC/reps;
cerr << "Basic matrix exponentiation/log time = " << elapsed_time << endl;
start = clock();
for(int i=0;i<reps;i++){
B.exp();
B.log();
}
stop = clock();
elapsed_time = (double)(stop-start)/CLOCKS_PER_SEC/reps;
cerr << "Accelerate matrix exponentiation/log time = " << elapsed_time << endl;
exponentiate / log成员函数实现如下:
void AccelerateMatrix::exp(){
int size =(int)this->getSize();
this->goToStart();
vvexp(this->ptr, this->ptr, &size);}
void Matrix::exp(){
double *ptr = data;
while (!atEnd()) {
*ptr = std::exp(*ptr);
ptr++;
}
}
data是指向double数组的第一个元素的指针。
以下是表现的输出:
矩阵元素数= 1000000
基本矩阵求幂/对数时间(秒)= 0.0089806
加速矩阵取幂/对数时间(秒)= 0.0149955
我在发布模式下从XCode运行。 我的处理器是2.3 GHz Intel Core i7。 内存为8 GB 1600 MHz DDR3。
答案 0 :(得分:0)
It appears the issue is to do with how vForce manipulates memory. Essentially it is not good at handling large matrices in one go. For vec_size = 1000;
vForce computes the exponential/log twice as fast as the compiler optimised, naive version. I broke the larger example vec_size = 1000000
up into batches of 1000 each, and lo and behold, the vForce implementation was twice as fast as the naive one. Nice!