我有一个数组(n,m):
[255 100 255]
[100 255 100]
[255 100 255]
我需要创建一个新数组,如测试neigboring值,如果North,East,South,West等于100,则我的值设置为100:
[255 100 255]
[100 100 100]
[255 100 255]
我有一个简单的解决方案,循环在1:n和1:m,但它显然非常慢,我想知道是否有办法更快地完成它。 我找到了几个关于滑动窗口来计算平均值的链接,但我不知道如何跟踪我的索引来创建新数组。 Using strides for an efficient moving average filter
提前感谢您的意见。
答案 0 :(得分:1)
假设A
为输入数组,这是使用slicing
和boolean indexing
的一种方法 -
# Get west, north, east & south elements for [1:-1,1:-1] region of input array
W = A[1:-1,:-2]
N = A[:-2,1:-1]
E = A[1:-1,2:]
S = A[2:,1:-1]
# Check if all four arrays have 100 for that same element in that region
mask = (W == 100) & (N == 100) & (E == 100) & (S == 100)
# Use the mask to set corresponding elements in a copy version as 100s
out = A.copy()
out[1:-1,1:-1][mask] = 100
示例运行 -
In [90]: A
Out[90]:
array([[220, 93, 205, 82, 23, 210, 22],
[133, 228, 100, 27, 210, 186, 246],
[196, 100, 73, 100, 86, 100, 53],
[195, 131, 100, 142, 100, 214, 100],
[247, 73, 117, 116, 24, 100, 50]])
In [91]: W = A[1:-1,:-2]
...: N = A[:-2,1:-1]
...: E = A[1:-1,2:]
...: S = A[2:,1:-1]
...: mask = (W == 100) & (N == 100) & (E == 100) & (S == 100)
...:
...: out = A.copy()
...: out[1:-1,1:-1][mask] = 100
...:
In [92]: out
Out[92]:
array([[220, 93, 205, 82, 23, 210, 22],
[133, 228, 100, 27, 210, 186, 246],
[196, 100, 100, 100, 86, 100, 53],
[195, 131, 100, 142, 100, 100, 100],
[247, 73, 117, 116, 24, 100, 50]])
这些问题主要出现在信号处理/图像处理领域。因此,您也可以使用2D convolution
替代解决方案,例如 -
from scipy import signal
from scipy import ndimage
# Use a structuring elements with north, west, east and south elements as 1s
strel = ndimage.generate_binary_structure(2, 1)
# 2D Convolve to get 4s at places that are surrounded by 1s
mask = signal.convolve2d((A==100).astype(int),strel,'same')==4
# Use the mask to set corresponding elements in a copy version as 100
out = A.copy()
out[mask] = 100
示例运行 -
In [119]: A
Out[119]:
array([[108, 184, 0, 176, 131, 86, 201],
[ 22, 47, 100, 78, 151, 196, 221],
[185, 100, 142, 100, 121, 100, 24],
[201, 101, 100, 138, 100, 20, 100],
[127, 227, 217, 19, 206, 100, 43]])
In [120]: strel = ndimage.generate_binary_structure(2, 1)
...: mask = signal.convolve2d((A==100).astype(int),strel,'same')==4
...:
...: out = A.copy()
...: out[mask] = 100
...:
In [121]: out
Out[121]:
array([[108, 184, 0, 176, 131, 86, 201],
[ 22, 47, 100, 78, 151, 196, 221],
[185, 100, 100, 100, 121, 100, 24],
[201, 101, 100, 138, 100, 100, 100],
[127, 227, 217, 19, 206, 100, 43]])
更简单的方法是使用ndimage.binary_closing
,这正是closing
的预期操作。因此,另一种获取掩码的替代方法是 -
strel = ndimage.generate_binary_structure(2, 1)
mask = ndimage.binary_closing(A==100, structure=strel)