我试图聚合两个数据框(df1
和df2
)。
第一个包含3个变量:ID
,Date1
和Date2
。
DF1
ID Date1 Date2
1 2016-03-01 2016-04-01
1 2016-04-01 2016-05-01
2 2016-03-14 2016-04-15
2 2016-04-15 2016-05-17
3 2016-05-01 2016-06-10
3 2016-06-10 2016-07-15
第二个变量还包含3个变量:ID
,Date3
和Value
。
DF2
ID Date3 Value
1 2016-03-15 5
1 2016-04-04 7
1 2016-04-28 7
2 2016-03-18 3
2 2016-03-27 5
2 2016-04-08 9
2 2016-04-20 2
3 2016-05-05 6
3 2016-05-25 8
3 2016-06-13 3
我们的想法是为每个df1
行获取具有相同df2$Value
且ID
介于Date3
之间的Date1
的总和和Date2
:
ID Date1 Date2 SumValue
1 2016-03-01 2016-04-01 5
1 2016-04-01 2016-05-01 14
2 2016-03-14 2016-04-15 17
2 2016-04-15 2016-05-17 2
3 2016-05-01 2016-06-10 14
3 2016-06-10 2016-07-15 3
我知道如何对此进行循环,但数据框很大!有人有一个有效的解决方案吗?探索data.table
,plyr
和dplyr
但无法找到解决方案。
答案 0 :(得分:4)
一些data.table
解决方案应该可以很好地扩展(并且在实现非equi连接之前有良好的止损):
使用by=EACHI
在J中进行比较。
library(data.table)
setDT(df1)
setDT(df2)
df1[, `:=`(Date1 = as.Date(Date1), Date2 = as.Date(Date2))]
df2[, Date3 := as.Date(Date3)]
df1[ df2,
{
idx = Date1 <= i.Date3 & i.Date3 <= Date2
.(Date1 = Date1[idx],
Date2 = Date2[idx],
Date3 = i.Date3,
Value = i.Value)
},
on=c("ID"),
by=.EACHI][, .(sumValue = sum(Value)), by=.(ID, Date1, Date2)]
# ID Date1 Date2 sumValue
# 1: 1 2016-03-01 2016-04-01 5
# 2: 1 2016-04-01 2016-05-01 14
# 3: 2 2016-03-14 2016-04-15 17
# 4: 2 2016-04-15 2016-05-17 2
# 5: 3 2016-05-01 2016-06-10 14
# 6: 3 2016-06-10 2016-07-15 3
foverlap
加入(如评论中所述)
library(data.table)
setDT(df1)
setDT(df2)
df1[, `:=`(Date1 = as.Date(Date1), Date2 = as.Date(Date2))]
df2[, Date3 := as.Date(Date3)]
df2[, Date4 := Date3]
setkey(df1, ID, Date1, Date2)
foverlaps(df2,
df1,
by.x=c("ID", "Date3", "Date4"),
type="within")[, .(sumValue = sum(Value)), by=.(ID, Date1, Date2)]
# ID Date1 Date2 sumValue
# 1: 1 2016-03-01 2016-04-01 5
# 2: 1 2016-04-01 2016-05-01 14
# 3: 2 2016-03-14 2016-04-15 17
# 4: 2 2016-04-15 2016-05-17 2
# 5: 3 2016-05-01 2016-06-10 14
# 6: 3 2016-06-10 2016-07-15 3
进一步阅读
答案 1 :(得分:3)
最近在Authorization
的{{3}}中实施了non-equi
加入功能,可以按照以下方式完成:
data.table, v1.9.7
列名需要一些修复..以后会对它起作用。
答案 2 :(得分:1)
以下是使用sapply()
的基本R解决方案:
df1 <- data.frame(ID=c(1L,1L,2L,2L,3L,3L),Date1=as.Date(c('2016-03-01','2016-04-01','2016-03-14','2016-04-15','2016-05-01','2016-06-01')),Date2=as.Date(c('2016-04-01','2016-05-01','2016-04-15','2016-05-17','2016-06-15','2016-07-15')));
df2 <- data.frame(ID=c(1L,1L,1L,2L,2L,2L,2L,3L,3L,3L),Date3=as.Date(c('2016-03-15','2016-04-04','2016-04-28','2016-03-18','2016-03-27','2016-04-08','2016-04-20','2016-05-05','2016-05-25','2016-06-13')),Value=c(5L,7L,7L,3L,5L,9L,2L,6L,8L,3L));
cbind(df1,SumValue=sapply(seq_len(nrow(df1)),function(ri) sum(df2$Value[df1$ID[ri]==df2$ID & df1$Date1[ri]<=df2$Date3 & df1$Date2[ri]>df2$Date3])));
## ID Date1 Date2 SumValue
## 1 1 2016-03-01 2016-04-01 5
## 2 1 2016-04-01 2016-05-01 14
## 3 2 2016-03-14 2016-04-15 17
## 4 2 2016-04-15 2016-05-17 2
## 5 3 2016-05-01 2016-06-15 17
## 6 3 2016-06-01 2016-07-15 3
请注意,在某些情况下,您的df1
和预期输出的日期略有不同;我使用了df1
个日期。
这是另一种尝试更加向量化的方法:将索引的笛卡尔积计算预先计算到两个帧中,然后使用索引向量执行单个向量化条件表达式以获得匹配的索引对,最后使用匹配的索引进行聚合期望的结果:
cbind(df1,SumValue=with(expand.grid(i1=seq_len(nrow(df1)),i2=seq_len(nrow(df2))),{
x <- df1$ID[i1]==df2$ID[i2] & df1$Date1[i1]<=df2$Date3[i2] & df1$Date2[i1]>df2$Date3[i2];
tapply(df2$Value[i2[x]],i1[x],sum);
}));
## ID Date1 Date2 SumValue
## 1 1 2016-03-01 2016-04-01 5
## 2 1 2016-04-01 2016-05-01 14
## 3 2 2016-03-14 2016-04-15 17
## 4 2 2016-04-15 2016-05-17 2
## 5 3 2016-05-01 2016-06-15 17
## 6 3 2016-06-01 2016-07-15 3