我是NuSMV的新手并尝试为这个简单的回合制游戏进行建模。一堆中有10块砖,每个玩家每回合可以拿1-3块砖,无论谁拿走最后一块砖都赢了。假设玩家A先行,这是我的尝试。我想表达“最终有一个胜利者”,但我的代码不起作用,因为它不会阻止玩家在砖= 0之后拿砖,所以最终玩家a,b都将成为赢家。
这是我的代码:
MODULE main
VAR
bricks : 0..10;
i : 1..3;
j : 1..3;
turn : boolean;
winner : {none, a, b};
ASSIGN
init(winner) := none;
init(bricks) := 10;
init(turn) := TRUE;
next(turn) := case
turn : FALSE;
!turn: TRUE;
esac;
next(bricks) :=
case
bricks - j >= 0 : bricks - j;
bricks - j < 0 : 0;
TRUE:bricks;
esac;
next(winner) := case
turn=TRUE & bricks = 0: a;
turn=FALSE & bricks = 0: b;
TRUE:winner;
esac;
SPEC AF (winner = a | winner = b)
这是我在SPEC AF上的输出(获胜者= a |获胜者=无)来说明我的观点。
i = 1
j = 1
turn = TRUE
winner = none
State: 1.2 <-
bricks = 9
j = 3
turn = FALSE
State: 1.3 <-
bricks = 6
turn = TRUE
State: 1.4 <-
bricks = 3
turn = FALSE
State: 1.5 <-
bricks = 0
j = 1
turn = TRUE
State: 1.6 <-
turn = FALSE
winner = a
State: 1.7 <-
turn = TRUE
winner = b
正如你所看到的,模特仍然提供了一个反例,玩家在赢得游戏后赢得游戏。
答案 0 :(得分:0)
我不确定您是如何提供反例的,因为您指定的属性 已被模型验证:
-- specification AF (winner = a | winner = b) is true
也许你模拟了这个程序,并且只是观察到它的行为方式出乎意料。您似乎真正要验证的属性是AF (AG winner = a | AG winner = b)
。事实上,使用此属性会产生类似于您自己的反例:
-- specification AF (AG winner = a | AG winner = b) is false
-- as demonstrated by the following execution sequence
Trace Description: CTL Counterexample
Trace Type: Counterexample
-> State: 1.1 <-
bricks = 10
i = 1
j = 1
turn = TRUE
winner = none
-> State: 1.2 <-
bricks = 9
turn = FALSE
-> State: 1.3 <-
bricks = 8
turn = TRUE
-> State: 1.4 <-
bricks = 7
turn = FALSE
-> State: 1.5 <-
bricks = 6
turn = TRUE
-> State: 1.6 <-
bricks = 5
turn = FALSE
-> State: 1.7 <-
bricks = 4
turn = TRUE
-> State: 1.8 <-
bricks = 3
turn = FALSE
-> State: 1.9 <-
bricks = 2
turn = TRUE
-> State: 1.10 <-
bricks = 1
turn = FALSE
-> State: 1.11 <-
bricks = 0
turn = TRUE
-- Loop starts here
-> State: 1.12 <-
turn = FALSE
winner = a
-> State: 1.13 <-
turn = TRUE
winner = b
-> State: 1.14 <-
turn = FALSE
winner = a
问题在于,即使游戏结束,你也会翻转,因此,胜利者也会在A和B之间不断翻转。
我以更好的方式重写您的解决方案:
MODULE main
VAR
bricks : 0..10;
q : 0..3;
turn : {A_TURN , B_TURN};
DEFINE
game_won := next(bricks) = 0;
a_won := game_won & turn = A_TURN;
b_won := game_won & turn = B_TURN;
ASSIGN
init(bricks) := 10;
init(turn) := A_TURN;
next(bricks) := case
bricks - q >= 0 : bricks - q;
TRUE : 0;
esac;
next(turn) := case
turn = A_TURN & !game_won: B_TURN;
turn = B_TURN & !game_won: A_TURN;
TRUE : turn;
esac;
-- forbid q values from being both larger than the remaining number of
-- bricks, and equal to zero when there are still bricks to take.
INVAR (q <= bricks)
INVAR (bricks > 0) -> (q > 0)
INVAR (bricks <= 0) -> (q = 0)
-- Sooner or later the number of bricks will always be
-- zero for every possible state in every possible path,
-- that is, someone won the game
CTLSPEC
AF AG (bricks = 0)
我认为代码是不言自明的。
您可以使用以下命令同时使用 NuSMV 和 nuXmv 运行它:
> read_model -i game.smv
> go
> check_property
-- specification AF (AG bricks = 0) is true
如果您想要找到可能的解决方案,只需翻转属性:
> check_ctlspec -p "AF AG (bricks != 0)"
-- specification AF (AG bricks != 0) is false
-- as demonstrated by the following execution sequence
Trace Description: CTL Counterexample
Trace Type: Counterexample
-> State: 1.1 <-
bricks = 10
q = 1
turn = A_TURN
game_won = FALSE
b_won = FALSE
a_won = FALSE
-> State: 1.2 <-
bricks = 9
turn = B_TURN
-> State: 1.3 <-
bricks = 8
turn = A_TURN
-> State: 1.4 <-
bricks = 7
turn = B_TURN
-> State: 1.5 <-
bricks = 6
turn = A_TURN
-> State: 1.6 <-
bricks = 5
turn = B_TURN
-> State: 1.7 <-
bricks = 4
turn = A_TURN
-> State: 1.8 <-
bricks = 3
turn = B_TURN
-> State: 1.9 <-
bricks = 2
turn = A_TURN
-> State: 1.10 <-
bricks = 1
turn = B_TURN
game_won = TRUE
b_won = TRUE
-- Loop starts here
-> State: 1.11 <-
bricks = 0
q = 0
-> State: 1.12 <-
我希望你会发现这个答案很有用。