我所拥有的程序应该将矩阵连续分成四个象限,直到找到给定的值。使用当前程序,它将永远运行。如何让它发布我搜索的号码?
public static void DivideAndConquerSearch(int target, int fromRow, int toRow, int fromCol, int toCol, int[][] matrix, int comparison_counter) {
boolean found = false;
while (!found) {
int i = fromRow + (toRow - fromRow) / 2;
int j = fromCol + (toCol - fromCol) / 2;
if (matrix[i][j] == target) {
found = true;
} else if (matrix[i][j] < target) {
if (i + 1 <= toRow) {
found = false;
DivideAndConquerSearch(target, i + 1, toRow, fromCol, toCol, matrix, comparison_counter);
} else if (j - 1 >= fromCol) {
found = false;
DivideAndConquerSearch(target, fromRow, toRow, fromCol, j - 1, matrix, comparison_counter);
}
}
comparison_counter++;
}
if (found == true) {
System.out.println(target + " found in " + comparison_counter + " comparisons using recursive search");
} else {
System.out.println(target + " NOT found in " + comparison_counter + " comparisons using recursive search");
}
}
答案 0 :(得分:0)
我写了一些东西,只是使用递归方法搜索整个数组(暴力种类)。它将2D阵列分成4个象限并搜索NW,NE,SW,SE。我使用OR
条件来检查是否在任何象限中找到它。因此,如果在NW中找到数字,则不会搜索其余的数据(是的!)。如果您有任何疑问,请告诉我。代码不是最漂亮或最优化的,我有点选择离开它,这样你就可以理解我做得更好了。全班,包括(非常基础)测试...
public class Divide_Conquer_2dArr {
private static boolean divideAndConquer(int[][] arr, int target) {
/* IDEA */
// NORTH_WEST [Kanye West joke(?)]
// need to search row-wise from [0,row-1], col-wise from [0, col-1]
// NORTH_EAST
// need to search row-wise from [0,row-1], col-wise from [col, maxCol]
// SOUTH_WEST
// need to search row-wise from [row, maxRow], col-wise from [0, col-1]
// SOUTH_EAST
// need to search row-wise from [row, maxRow], col-wise from [col, maxCol]
return divideAndConquerHelper(arr, target, 0, arr[0].length-1, 0, arr.length-1);
}
private static boolean divideAndConquerHelper(int[][] arr, int target, int minCol,
int maxCol, int minRow, int maxRow) {
// print relevant stuff
printArr(arr, minCol, maxCol, minRow, maxRow);
if(minCol == maxCol || minRow == maxRow) {
if(minCol == maxCol) {
for(int i = minRow ; i <= maxRow ; i++)
if(arr[i][minCol] == target) {
System.out.println("Found!");
return true;
}
}
else if(minRow == maxRow) {
for(int i = minCol ; i <= maxCol ; i++)
if(arr[minRow][i] == target) {
System.out.println("Found!");
return true;
}
}
return false;
}
int midRow = (maxRow + minRow)/2;
int midCol = (maxCol + minCol)/2;
return
// north-west quadrant
divideAndConquerHelper(arr, target, minCol, midCol, minRow, midRow)
||
// north-east quadrant
divideAndConquerHelper(arr, target, midCol+1, maxCol, minRow, midRow)
||
// south-west quadrant
divideAndConquerHelper(arr, target, minCol, midCol, midRow+1, maxRow)
||
// south-east quadrant
divideAndConquerHelper(arr, target, midCol+1, maxCol, midRow+1, maxRow);
}
// prints arr[minRow..maxRow][minCol..maxCol] inclusive
private static void printArr(int[][] arr, int minCol,
int maxCol, int minRow, int maxRow) {
for(int i = minRow ; i <= maxRow ; i++ ) {
for(int j = minCol ; j <= maxCol ; j++) {
System.out.print(arr[i][j] + "\t");
}
System.out.println();
}
System.out.println("==================================");
}
public static void main(String[] args) {
int[][] arr = new int[][]
{
{1,2,3,4},
{6,7,8,9},
{11,12,13,14},
{16,17,18,19},
{21,22,23,24}
};
boolean retVal = divideAndConquer(arr, 12);
if(!retVal)
System.out.println("Not found :(");
}
}