我正在使用accord.net。以下示例工作正常,但我想制作Multi类分类器。 我尝试使用MulticlassSupportVectorMachine()函数,但它为动态时间扭曲类内核训练数据时出现0.6错误,这对于某些输入没有给出正确的输出。
// Suppose you have sequences of multivariate observations, and that
// those sequences could be of arbitrary length. On the other hand,
// each observation have a fixed, delimited number of dimensions.
// In this example, we have sequences of 3-dimensional observations.
// Each sequence can have an arbitrary length, but each observation
// will always have length 3:
double[][][] sequences ={
new double[][] // first sequence
{
new double[] { 1, 1, 1 }, // first observation of the first sequence
new double[] { 1, 2, 1 }, // second observation of the first sequence
new double[] { 1, 4, 2 }, // third observation of the first sequence
new double[] { 2, 2, 2 }, // fourth observation of the first sequence
},
new double[][] // second sequence (note that this sequence has a different length)
{
new double[] { 1, 1, 1 }, // first observation of the second sequence
new double[] { 1, 5, 6 }, // second observation of the second sequence
new double[] { 2, 7, 1 }, // third observation of the second sequence
},
new double[][] // third sequence
{
new double[] { 8, 2, 1 }, // first observation of the third sequence
},
new double[][] // fourth sequence
{
new double[] { 8, 2, 5 }, // first observation of the fourth sequence
new double[] { 1, 5, 4 }, // second observation of the fourth sequence
}
};
// Now, we will also have different class labels associated which each
// sequence. We will assign -1 to sequences whose observations start
// with { 1, 1, 1 } and +1 to those that do not:
int[] outputs =
{
-1,-1, // First two sequences are of class -1 (those start with {1,1,1})
1, 1, // Last two sequences are of class +1 (don't start with {1,1,1})
};
// At this point, we will have to "flat" out the input sequences from double[][][]
// to a double[][] so they can be properly understood by the SVMs. The problem is
// that, normally, SVMs usually expect the data to be comprised of fixed-length
// input vectors and associated class labels. But in this case, we will be feeding
// them arbitrary-length sequences of input vectors and class labels associated with
// each sequence, instead of each vector.
double[][] inputs = new double[sequences.Length][];
for (int i = 0; i < sequences.Length; i++)
inputs[i] = Matrix.Concatenate(sequences[i]);
// Now we have to setup the Dynamic Time Warping kernel. We will have to
// inform the length of the fixed-length observations contained in each
// arbitrary-length sequence:
//
DynamicTimeWarping kernel = new DynamicTimeWarping(length: 3);
// Now we can create the machine. When using variable-length
/ / kernels, we will need to pass zero as the input length:
var svm = new KernelSupportVectorMachine(kernel, inputs: 0);
// Create the Sequential Minimal Optimization learning algorithm
var smo = new SequentialMinimalOptimization(svm, inputs, outputs)
{
Complexity = 1.5
};
// And start learning it!
double error = smo.Run(); // error will be 0.0
// At this point, we should have obtained an useful machine. Let's
// see if it can understand a few examples it hasn't seem before:
double[][] a =
{
new double[] { 1, 1, 1 },
new double[] { 7, 2, 5 },
new double[] { 2, 5, 1 },
};
double[][] b =
{
new double[] { 7, 5, 2 },
new double[] { 4, 2, 5 },
new double[] { 1, 1, 1 },
};
// Following the aforementioned logic, sequence (a) should be
// classified as -1, and sequence (b) should be classified as +1.
int resultA = System.Math.Sign(svm.Compute(Matrix.Concatenate(a))); // -1
int resultB = System.Math.Sign(svm.Compute(Matrix.Concatenate(b))); // +1
我需要帮助来使用MulticlassSupportVectorMachine()来实现Multi class SVM分类器,它可以训练机器输入两种以上的类型,并为每种输入类型提供输出标签。 P.S:如果MulticlassSupportVectorMachine()函数不支持动态时间扭曲内核。请告诉我如何在上面的动态时间扭曲内核中使用一对一的多类svm技术,并使用一对一技术制作多分类器。 非常感谢您的帮助。 在此先感谢。
答案 0 :(得分:0)
此代码适用于我
var smo = new MulticlassSupportVectorLearning<DynamicTimeWarping, double[][]>()
{
// Set the parameters of the kernel
Kernel = new DynamicTimeWarping(alpha: 1, degree: 1)
};
// And use it to learn a machine!
var svm = smo.Learn(words, labels);
// Create the multi-class learning algorithm for the machine
var calibration = new MulticlassSupportVectorLearning<DynamicTimeWarping, double[][]>()
{
Model = svm, // We will start with an existing machine
// Configure the learning algorithm to use SMO to train the
// underlying SVMs in each of the binary class subproblems.
Learner = (param) => new ProbabilisticOutputCalibration<DynamicTimeWarping, double[][]>()
{
Model = param.Model // Start with an existing machine
}
};
// Configure parallel execution options
calibration.ParallelOptions.MaxDegreeOfParallelism = 1;
// Learn a machine
calibration.Learn(words, labels);
// Obtain class predictions for each sample
int[] predicted = svm.Decide(words);
int[] expected = new int[words.Length];
double correct = 0;
for (int i = 0; i < words.Length; i++)
{
expected[i] = labels[i];
predicted[i] = svm.Decide(words[i]);
if (svm.Decide(words[i]) == labels[i])
{
correct++;
}
}
string Accurecy = "SMO Accurecy = " + (correct / predicted.Length).ToString() + Environment.NewLine; // ori