关于附加图像,我需要一个计算算法将轴A向下移动n英寸,轴B从左向右移动m英寸,以便组件圆D跟随抛物线的曲线;圆D不总是10英寸,可以更小。我不是数学专业,所以这对我来说有点复杂。我知道我在轴A上有一个弧长,必须计算(我不知道怎么做。),然后我在轴B上也有一个弧长,并且弧正在参考轴A的位置,这个与圆D的直径相关的弧长将决定圆D和抛物线之间的交点在抛物线上的位置。为了跟随抛物线的曲线从左到右,反之亦然 - 我需要一个公式来跟随抛物线。考虑D改变大小。有人可以就如何做到这一点提供一些答案;一个很好的公式,带有一些解释性信息 - 至少足够详细,我可以搜索这些部分和位,以了解该做什么。
答案 0 :(得分:2)
似乎你需要计算得到的曲线作为抛物线的偏移量。
在接下来的C ++程序中,我将展示如何首先找到抛物线的公式,然后如何计算该曲线的偏移量,最后如何找到两个轴相互形成的角度。
我将点(0,0)视为抛物线的左极,其底部(顶点)将位于坐标(12,-8.75)处,而右极点位于(24,0)处。以此图片为参考(抛物线为蓝色,圆心的轨迹为橙色):
请注意,如果圆圈太大,虽然它在一侧相切,但它可以与另一侧的抛物线相交。我不确定12“是抛物线的总宽度还是只有一半,但在后一种情况下,10”工具会太大:
程序将打印出一些样本(25)的坐标,其中代表工具的圆与抛物线相切,圆心的相应坐标(工具的位置)和角度两轴(α和β)。
#include <iostream>
#include <iomanip>
#include <vector>
#include <cmath>
using std::cout;
using std::setw;
using std::vector;
int main() {
// set number of steps or points of approximation
int n_steps = 25;
// declare vectors to store coordinates into
vector<double> x2(n_steps), y2(n_steps);
// calculate the parameters of the parabola expressed by the formula
// y = ax^2 + bx + c
// Knowing 2 points, one of which is the vertex.
// xv = -b/2a | b = -2axv
// y0 = ax0^2 + bx0 + c => | yv - y0 = a(xv^2 - x0^2) + b(xv - x0)
// yv = axv^2 + bxv + c | yv - y0 = a(xv - x0)(xv + x0) + b(xv - x0)
//
// a ((xv - x0)*(xv + x0) - 2xv(xv - x0)) = yv - y0
// a (xv - x0)*(xv + x0 - 2xv) = yv - y0
// Known coordinates
double xv = 12.0,
yv = -8.75,
x0 = 0.0,
y0 = 0.0;
double dx = xv - x0,
a = (y0 - yv) / ( dx * dx ),
b = - 2.0 * a * xv,
c = y0 - x0 * ( a * x0 + b );
cout << "Parabola formula:\n"
<< "y = " << a << "x^2 + " << b << "x + " << c << "\n\n"
<< "max acceptable diameter: " << 1.0 / a << "\n\n";
// Coordinates of rotating axes, extrapolated from your drawing
double r1 = 13,
r2 = 9,
x1 = xv - r1,
y1 = r2;
// some helper values (constant) I'll use later
double rad_to_deg = 180.0 / M_PI,
r1quad = r1 * r1,
r2quad = r2 * r2,
rdif = r1quad - r2quad,
rsum = r1quad + r2quad,
rden = 1.0 / ( 2.0 * r1 * r2 );
// radius of the circle (tool)
double diameter = 10,
radius = diameter / 2.0;
cout << "Diameter of tool (circle): " << diameter << "\n\n";
// calculate parabola points
cout << "\t\t\tTangent\t\t\t\tCenter of circle\t\t alpha\t\tbeta\n";
// xt[0] = x0 xt[n_steps] = x0 + 2*(xv - x0)
double step = 2.0 * dx / ( n_steps - 1 );
for ( int i = 0; i < n_steps; ++i ) {
// calculate the tangent points which lies on the parabola
double xt = x0 + i * step,
yt = xt * ( a * xt + b ) + c;
// calculate the offset points, coordinates of the center of the circle
// first derivative of the parabola
double delta = 2.0 * a * xt + b;
// point perpendicular to the tangent at distance equal to radius
double k = radius / sqrt(delta * delta + 1.0);
x2[i] = xt - k * delta;
y2[i] = yt + k;
// distance from x,y to x1,y1
double dx1 = x2[i] - x1,
dy1 = y2[i] - y1,
r3quad = dx1 * dx1 + dy1 * dy1,
r3 = sqrt(r3quad);
// Now that I know the coordinates of the vertices of the triangle
// and the lengths of its sides I can calculate the inner angles
// using Carnot teorem, for example: a^2 = b^2 + c^2 - 2bc*cos(alpha)
double alpha_Carnot = acos((rdif + r3quad) / (2.0 * r1 * r3)),
beta_Carnot = acos((rsum - r3quad) * rden);
// angle to the orizzontal of line from x1,y1 to x,y in radians
double gamma = atan2(dy1,dx1);
// angle of Axis A to the orizzontal in degrees
double alpha = (gamma + alpha_Carnot) * rad_to_deg;
// angle of Axis B to Axis A. beta = 0 if parallel
double beta = beta_Carnot * rad_to_deg - 180.0;
// output the coordinates
cout << std::fixed << setw(4) << i << setw(10) << xt << setw(10) << yt
<< setw(15) << x2[i] << setw(10) << y2[i]
<< setw(15) << alpha << setw(12) << beta << '\n';
}
return 0;
}
这是输出:
Parabola formula:
y = 0.0607639x^2 + -1.45833x + 0
max acceptable diameter: 16.4571
Diameter of tool (circle): 10
Tangent Center of circle alpha beta
0 0.000000 0.000000 4.123644 2.827642 -7.228866 -142.502245
1 1.000000 -1.397569 5.003741 1.597437 -7.151211 -132.856051
2 2.000000 -2.673611 5.860925 0.503378 -7.962144 -123.965745
3 3.000000 -3.828125 6.690144 -0.454279 -9.159057 -115.700562
4 4.000000 -4.861111 7.485392 -1.276137 -10.496232 -108.022957
5 5.000000 -5.772569 8.239777 -1.964178 -11.833367 -100.941141
6 6.000000 -6.562500 8.945861 -2.522462 -13.081185 -94.488527
7 7.000000 -7.230903 9.596439 -2.957906 -14.180211 -88.708034
8 8.000000 -7.777778 10.185964 -3.280939 -15.093523 -83.633631
9 9.000000 -8.203125 10.712644 -3.505588 -15.805504 -79.267662
10 10.000000 -8.506944 11.180897 -3.648397 -16.321003 -75.558850
11 11.000000 -8.689236 11.603201 -3.725755 -16.659970 -72.392050
12 12.000000 -8.750000 12.000000 -3.750000 -16.845543 -69.600878
13 13.000000 -8.689236 12.396799 -3.725755 -16.889440 -67.003199
14 14.000000 -8.506944 12.819103 -3.648397 -16.782985 -64.443028
15 15.000000 -8.203125 13.287356 -3.505588 -16.499460 -61.816277
16 16.000000 -7.777778 13.814036 -3.280939 -16.005878 -59.069041
17 17.000000 -7.230903 14.403561 -2.957906 -15.277444 -56.174060
18 18.000000 -6.562500 15.054139 -2.522462 -14.309495 -53.098717
19 19.000000 -5.772569 15.760223 -1.964178 -13.126180 -49.773973
20 20.000000 -4.861111 16.514608 -1.276137 -11.788732 -46.064496
21 21.000000 -3.828125 17.309856 -0.454279 -10.409278 -41.729113
22 22.000000 -2.673611 18.139075 0.503378 -9.184425 -36.337384
23 23.000000 -1.397569 18.996259 1.597437 -8.503984 -29.006402
24 24.000000 0.000000 19.876356 2.827642 -9.577076 -16.878208
这些是不同位置的一些图片(感谢excell):
答案 1 :(得分:0)
抛物线ax^2+bx+c
的斜率为2ax+b
。
要查找圆圈具有特定斜率值(s
)的位置,您需要y/x = s
。连同等式x^2+y^2=r^2
(您可能想要圆的下半部分,顺便说一句),您可以看到相对于圆心的位置,圆的边缘将触及抛物线。
因此,如果圆心和抛物线点之间的距离与圆心和切点之间的距离不同,则需要移动轴。