所以,假设我有下表:
Name | Color
------------------------------
John | Blue
Greg | Red
John | Yellow
Greg | Red
Greg | Blue
我想得到一个表格,列出每个名字的不同颜色 - 多少及其价值。意思是这样的:
Name | Distinct | Values
--------------------------------------
John | 2 | Blue, Yellow
Greg | 2 | Red, Blue
任何想法怎么做?
答案 0 :(得分:4)
collect_list将为您提供一个列表而不删除重复项。 collect_set将自动删除重复项 所以只是
select
Name,
count(distinct color) as Distinct, # not a very good name
collect_set(Color) as Values
from TblName
group by Name
此功能已实施,因为spark 1.6.0检查出来:
/**
* Aggregate function: returns a set of objects with duplicate elements eliminated.
*
* For now this is an alias for the collect_set Hive UDAF.
*
* @group agg_funcs
* @since 1.6.0
*/
def collect_set(columnName: String): Column = collect_set(Column(columnName))
答案 1 :(得分:0)
对于PySPark;我来自R / Pandas背景,所以我实际上发现Spark Dataframes更容易使用。
要做到这一点:
这是我为此创建的课程:
class SQLspark():
def __init__(self, local_dir='./', hdfs_dir='/users/', master='local', appname='spark_app', spark_mem=2):
self.local_dir = local_dir
self.hdfs_dir = hdfs_dir
self.master = master
self.appname = appname
self.spark_mem = int(spark_mem)
self.conf = (SparkConf()
.setMaster(self.master)
.setAppName(self.appname)
.set("spark.executor.memory", self.spark_mem))
self.sc = SparkContext(conf=self.conf)
self.sqlContext = SQLContext(self.sc)
def file_to_df(self, input_file):
# import file as dataframe, all cols will be imported as strings
df = self.sqlContext.read.format("com.databricks.spark.csv").option("header", "true").option("delimiter", "\t").option("inferSchema", "true").load(input_file)
# # cache df object to avoid rebuilding each time
df.cache()
# register as temp table for querying, use 'spark_df' as table name
df.registerTempTable("spark_df")
return df
# you also cast a spark dataframe as a pandas df
def sparkDf_to_pandasDf(self, input_df):
pandas_df = input_df.toPandas()
return pandas_df
def find_distinct(self, col_name):
my_query = self.sqlContext.sql("""SELECT distinct {} FROM spark_df""".format(col_name))
# now do your thing with the results etc
my_query.show()
my_query.count()
my_query.collect()
###############
if __name__ == '__main__':
# instantiate class
# see function for variables to input
spark = TestETL(os.getcwd(), 'hdfs_loc', "local", "etl_test", 10)
# specify input file to process
tsv_infile = 'path/to/file'