优雅的方法来替换另一个DataFrame中的pandas.DataFrame中的值

时间:2016-03-12 16:50:04

标签: python pandas apply

我有一个数据框,我想用一个列中的值替换另一个数据帧中的值。

df = pd.DataFrame({'id1': [1001,1002,1001,1003,1004,1005,1002,1006],
                   'value1': ["a","b","c","d","e","f","g","h"],
                   'value3': ["yes","no","yes","no","no","no","yes","no"]})

dfReplace = pd.DataFrame({'id2': [1001,1002],
                   'value2': ["rep1","rep2"]})

我需要使用具有公共密钥的groupby,并且当前的解决方案是使用循环。是否有一种更优雅(更快)的方法来使用.map(apply)等。我想初始使用pd.update(),但似乎没有正确的方法。

groups = dfReplace.groupby(['id2'])

for key, group in groups:
    df.loc[df['id1']==key,'value1']=group['value2'].values

输出

df
    id1   value1 value3
0   1001  rep1   yes
1   1002  rep2   no
2   1001  rep1   yes
3   1003  d      no
4   1004  e      no
5   1005  f      no
6   1002  rep2   yes
7   1006  h      no

2 个答案:

答案 0 :(得分:3)

尝试merge()

merge = df.merge(dfReplace, left_on='id1', right_on='id2', how='left')
print(merge)

merge.ix[(merge.id1 == merge.id2), 'value1'] = merge.value2
print(merge)

del merge['id2']
del merge['value2']
print(merge)

输出:

    id1 value1 value3   id2 value2
0  1001      a    yes  1001   rep1
1  1002      b     no  1002   rep2
2  1001      c    yes  1001   rep1
3  1003      d     no   NaN    NaN
4  1004      e     no   NaN    NaN
5  1005      f     no   NaN    NaN
6  1002      g    yes  1002   rep2
7  1006      h     no   NaN    NaN

    id1 value1 value3   id2 value2
0  1001   rep1    yes  1001   rep1
1  1002   rep2     no  1002   rep2
2  1001   rep1    yes  1001   rep1
3  1003      d     no   NaN    NaN
4  1004      e     no   NaN    NaN
5  1005      f     no   NaN    NaN
6  1002   rep2    yes  1002   rep2
7  1006      h     no   NaN    NaN

    id1 value1 value3
0  1001   rep1    yes
1  1002   rep2     no
2  1001   rep1    yes
3  1003      d     no
4  1004      e     no
5  1005      f     no
6  1002   rep2    yes
7  1006      h     no

答案 1 :(得分:2)

如果你已经将索引设置为id,这会更清晰一些,但如果没有,你仍然可以在一行中完成:

>>> (dfReplace.set_index('id2').rename( columns = {'value2':'value1'} )
                               .combine_first(df.set_index('id1')))

     value1 value3
1001   rep1    yes
1001   rep1    yes
1002   rep2     no
1002   rep2    yes
1003      d     no
1004      e     no
1005      f     no
1006      h     no

如果你分成三行并分别重命名和重新编制索引,你可以看到combine_first()本身实际上非常简单:

>>> df = df.set_index('id1')
>>> dfReplace = dfReplace.set_index('id2').rename( columns={'value2':'value1'} )

>>> dfReplace.combine_first(df)