如何使用opencv功能匹配来检测copy-move伪造

时间:2016-03-11 23:08:56

标签: c++ opencv sift flann

在我的opencv项目中,我想检测图像中的复制移动伪造。我知道如何在2个不同的图像中使用opencv FLANN进行特征匹配,但是我对如何使用FLANN进行图像中的检测复制 - 移动伪造感到困惑。

P.S1:我得到了图像的筛选关键点和描述符,并坚持使用特征匹配类。

P.S2:特征匹配的类型对我来说并不重要。

提前致谢。

更新:

这些图片是我需要的一个例子

Input Image

Result

并且有一个代码可以匹配两个图像的功能并在两个图像(不是一个)上执行类似的操作,android原生opencv格式的代码如下所示:

    vector<KeyPoint> keypoints;
        Mat descriptors;

        // Create a SIFT keypoint detector.
        SiftFeatureDetector detector;
        detector.detect(image_gray, keypoints);
        LOGI("Detected %d Keypoints ...", (int) keypoints.size());

        // Compute feature description.
        detector.compute(image, keypoints, descriptors);
        LOGI("Compute Feature ...");


        FlannBasedMatcher matcher;
        std::vector< DMatch > matches;
        matcher.match( descriptors, descriptors, matches );

        double max_dist = 0; double min_dist = 100;

        //-- Quick calculation of max and min distances between keypoints
          for( int i = 0; i < descriptors.rows; i++ )
          { double dist = matches[i].distance;
            if( dist < min_dist ) min_dist = dist;
            if( dist > max_dist ) max_dist = dist;
          }

          printf("-- Max dist : %f \n", max_dist );
          printf("-- Min dist : %f \n", min_dist );

          //-- Draw only "good" matches (i.e. whose distance is less than 2*min_dist,
          //-- or a small arbitary value ( 0.02 ) in the event that min_dist is very
          //-- small)
          //-- PS.- radiusMatch can also be used here.
          std::vector< DMatch > good_matches;

          for( int i = 0; i < descriptors.rows; i++ )
          { if( matches[i].distance <= max(2*min_dist, 0.02) )
            { good_matches.push_back( matches[i]); }
          }

          //-- Draw only "good" matches
          Mat img_matches;
          drawMatches( image, keypoints, image, keypoints,
                       good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
                       vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );

          //-- Show detected matches
//          imshow( "Good Matches", img_matches );
          imwrite(imgOutFile, img_matches);

1 个答案:

答案 0 :(得分:2)

我不知道在这个问题上使用关键点是否是个好主意。我宁愿测试template matching(使用图片上的滑动窗口作为补丁)。与关键点相比,该方法具有对旋转和缩放敏感的缺点。

如果您想使用关键点,您可以:

  • 找到一组关键点(SURF,SIFT或任何你想要的东西),
  • 使用Brute Force Matcher的knnMatch函数(cv::BFMatcher)计算与其他所有关键点的匹配分数,
  • 保持区分点之间的匹配,即距离大于零(或阈值)的点。

    int nknn = 10; // max number of matches for each keypoint
    double minDist = 0.5; // distance threshold
    
    // Match each keypoint with every other keypoints
    cv::BFMatcher matcher(cv::NORM_L2, false);
    std::vector< std::vector< cv::DMatch > > matches;
    matcher.knnMatch(descriptors, descriptors, matches, nknn);
    
    double max_dist = 0; double min_dist = 100;
    
    //-- Quick calculation of max and min distances between keypoints
    for( int i = 0; i < descriptors.rows; i++ )
    { 
        double dist = matches[i].distance;
        if( dist < min_dist ) min_dist = dist;
        if( dist > max_dist ) max_dist = dist;
    }
    
    // Compute distance and store distant matches
    std::vector< cv::DMatch > good_matches;
    for (int i = 0; i < matches.size(); i++)
    {
        for (int j = 0; j < matches[i].size(); j++)
        {
            // The METRIC distance
            if( matches[i][j].distance> max(2*min_dist, 0.02) )
                continue;
    
            // The PIXELIC distance
            Point2f pt1 = keypoints[queryIdx].pt;
            Point2f pt2 = keypoints[trainIdx].pt;
    
            double dist = cv::norm(pt1 - pt2);
            if (dist > minDist)
                good_matches.push_back(matches[i][j]);
        }
    }
    
    Mat img_matches;
    drawMatches(image_gray, keypoints, image_gray, keypoints, good_matches, img_matches);