我有一个用python编写的程序,用户提供命令行参数来说明应该在某些数据上处理哪些统计数据。
最初,我编写的代码可以在X组合中获取N个统计数据并计算结果 - 但是,我发现如果我为自己编写代码来执行特定的统计组合,那么它总是要快得多。然后我编写了代码,如果我手工完成,我将编写python,而exec()使用它,这非常有效。理想情况下,我想找到一种方法来获得与python重写循环时相同的性能,但是以某种方式执行它不需要我的所有函数都是字符串!!
以下代码是显示问题的最小完整可验证示例。
import time
import argparse
import collections
parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter,
description="Demonstration that it is sometimes much faster to use exec() than to not.")
parser.add_argument("--stat", nargs='+', metavar='', action='append',
help='Supply a list of stats to run here. You can use --stat more than once to make multiple groups.')
args = parser.parse_args()
allStats = {}
class stat1:
def __init__(self):
def process(someValue):
return someValue**3
self.calculate = process
allStats['STAT1'] = stat1()
class stat2:
def __init__(self):
def process(someValue):
return someValue*someValue
self.calculate = process
allStats['STAT2'] = stat2()
class stat3:
def __init__(self):
def process(someValue):
return someValue+someValue
self.calculate = process
allStats['STAT3'] = stat3()
allStatsString = {}
allStatsString['STAT1'] = 'STAT1 = someValue**3'
allStatsString['STAT2'] = 'STAT2 = someValue*someValue'
allStatsString['STAT3'] = 'STAT3 = someValue+someValue'
stats_to_run = set() # stats_to_run is a set of the stats the user wants to run, irrespective of grouping.
data = [collections.defaultdict(int) for x in range(0,len(args.stat))] # data is a list of dictionaries. One dictionary for each --stat group.
for group in args.stat:
stats_to_run.update(group)
for stat in group:
if stat not in allStats.keys():
print "I'm sorry Dave, I'm afraid I can't do that."; exit()
loops = 9000000
option = 1
startTime = time.time()
if option == 1:
results = dict.fromkeys(stats_to_run)
for someValue in xrange(0,loops):
for analysis in stats_to_run:
results[analysis] = allStats[analysis].calculate(someValue)
for a, analysis in enumerate(args.stat):
data[a][tuple([ results[stat] for stat in analysis ])] += 1
elif option == 2:
for someValue in xrange(0,loops):
STAT1 = someValue**3
STAT2 = someValue*someValue
STAT3 = someValue+someValue
data[0][(STAT1,STAT2)] += 1 # Store the first result group
data[1][(STAT3,)] += 1 # Store the second result group
else:
execute = 'for someValue in xrange(0,loops):'
for analysis in stats_to_run:
execute += '\n ' + allStatsString[analysis]
for a, analysis in enumerate(args.stat):
if len(analysis) == 1:
execute += '\n data[' + str(a) + '][('+ analysis[0] + ',)] += 1'
else:
execute += '\n data[' + str(a) + '][('+ ','.join(analysis) + ')] += 1'
print execute
exec(execute)
## This bottom bit just adds all these numbers up so we get a single value to compare the different methods with (to make sure they are the same)
total = 0
for group in data:
for stats in group:
total += sum(stats)
print total
print time.time() - startTime
如果使用参数python test.py --stat STAT1 STAT2 --stat STAT3
执行脚本,则平均:
选项3需要54秒(这并不奇怪,因为它基本上与上面相同)。
如果参数变得更复杂,例如“--stat STAT1 --stat STAT2 --stat STAT3 --stat STAT1 STAT2 STAT3”或循环次数上升,自内联代码与常规python代码变得越来越宽,越来越宽:
选项1需要393s
选项3需要190秒
通常我的用户会做50到1亿个循环,可能有3个组,每组有2到5个统计数据。统计数据本身并不简单,但计算时间的差异是几小时。
答案 0 :(得分:1)
我认为你只是想避免重复计算相同的统计数据。试试这个。请注意,我使用# Homebrew PHP CLI
export PATH="$(brew --prefix homebrew/php/php56)/bin:$PATH"
,因此我使用逗号分隔列表。你已经以某种方式弄清楚了,但不要告诉我们如何,所以不要担心 - 它并不重要。我建立一组统计名称的docopt
中的代码可能是关键。
parse_args