def obcandidate(inputvgg,outputmodel):
graph = Graph()
graph.add_input(name = 'input1', input_shape = (512, 14, 14))
graph.add_node(Convolution2D(512, 1, 1), name = 'conv11', input = 'input1')
graph.add_node(Convolution2D(512, 14, 14), name = 'conv112', input = 'conv11')
graph.add_node(Flatten(), name = 'flatten11', input = 'conv112')
graph.add_node(Dense(3136), name = 'dense1', input = 'flatten11')
graph.add_node((Activation('relu')), name = 'relu', input = 'dense1')
graph.add_node(Reshape((56,56)), name = 'reshape', input = 'relu')
sgd = SGD(lr = 0.001, decay = .00005, momentum = 0.9, nesterov = True)
graph.add_output(name = 'output1', input = 'reshape')
graph.compile(optimizer = sgd, loss = {
'output1': 'binary_crossentropy'})
print 'compile success'
history = graph.fit({'input1':inputvgg, 'output1':outputmodel}, nb_epoch=1)
predictions = graph.predict({'input1':inputvgg})
return graph
""
"main function"
""
if __name__ == "__main__":
model = VGG_16('vgg16_weights.h5')
sgdvgg = SGD(lr = 0.1, decay = 1e-6, momentum = 0.9, nesterov = True)
model.compile(optimizer = sgdvgg, loss = 'categorical_crossentropy')
finaloutputmodel = outputofconvlayer(model)
finaloutputmodel.compile(optimizer = sgdvgg, loss = 'categorical_crossentropy')
img = cv2.resize(cv2.imread('000032.jpg'), (224, 224))
mean_pixel = [103.939, 116.779, 123.68]
img = img.astype(np.float32, copy = False)
for c in range(3):
img[: , : , c] = img[: , : , c] - mean_pixel[c]
img = img.transpose((2, 0, 1))
img = np.expand_dims(img, axis = 0)
imgout = np.asarray(cv2.resize(cv2.imread('000032seg.png',0), (56, 56)))
imgout[imgout!=0]=1
out=imgout
inputvgg = np.asarray(finaloutputmodel.predict(img))
obcandidate(inputvgg,out)
嗨,上面是我的代码,我试图通过图形模型来分割候选对象
如果代码有效,我想检查一个输入,所以我给它一个输入图像和输出图像,
但是keras给了我一个错误 - “所有输入数组和目标数组必须具有相同数量的样本。”
任何人都可以告诉我我该怎么做以确定我的模型是否运行。我正在训练一个输入以便我可以验证我的模型是否正确并开始训练,还有其他方法吗?
答案 0 :(得分:1)
在您执行此操作的部分中,history = graph.fit({'input1':inputvgg, 'output1':outputmodel}, nb_epoch=1)
inputvgg和outputmodel应具有相同数量的维度。