我正在使用ELKI
对我使用KMeansLloyd<NumberVector>
with k=3
的数据进行聚类每次运行我的java代码我都会得到完全不同的聚类结果,这是正常的还是有的我应该做些什么来使我的输出几乎稳定?这里是我从elki教程获得的代码
DatabaseConnection dbc = new ArrayAdapterDatabaseConnection(a);
// Create a database (which may contain multiple relations!)
Database db = new StaticArrayDatabase(dbc, null);
// Load the data into the database (do NOT forget to initialize...)
db.initialize();
// Relation containing the number vectors:
Relation<NumberVector> rel = db.getRelation(TypeUtil.NUMBER_VECTOR_FIELD);
// We know that the ids must be a continuous range:
DBIDRange ids = (DBIDRange) rel.getDBIDs();
// K-means should be used with squared Euclidean (least squares):
//SquaredEuclideanDistanceFunction dist = SquaredEuclideanDistanceFunction.STATIC;
CosineDistanceFunction dist= CosineDistanceFunction.STATIC;
// Default initialization, using global random:
// To fix the random seed, use: new RandomFactory(seed);
RandomlyGeneratedInitialMeans init = new RandomlyGeneratedInitialMeans(RandomFactory.DEFAULT);
// Textbook k-means clustering:
KMeansLloyd<NumberVector> km = new KMeansLloyd<>(dist, //
3 /* k - number of partitions */, //
0 /* maximum number of iterations: no limit */, init);
// K-means will automatically choose a numerical relation from the data set:
// But we could make it explicit (if there were more than one numeric
// relation!): km.run(db, rel);
Clustering<KMeansModel> c = km.run(db);
// Output all clusters:
int i = 0;
for(Cluster<KMeansModel> clu : c.getAllClusters()) {
// K-means will name all clusters "Cluster" in lack of noise support:
System.out.println("#" + i + ": " + clu.getNameAutomatic());
System.out.println("Size: " + clu.size());
System.out.println("Center: " + clu.getModel().getPrototype().toString());
// Iterate over objects:
System.out.print("Objects: ");
for(DBIDIter it = clu.getIDs().iter(); it.valid(); it.advance()) {
// To get the vector use:
NumberVector v = rel.get(it);
// Offset within our DBID range: "line number"
final int offset = ids.getOffset(it);
System.out.print(v+" " + offset);
// Do NOT rely on using "internalGetIndex()" directly!
}
System.out.println();
++i;
}
答案 0 :(得分:5)
我会说,因为你正在使用RandomlyGeneratedInitialMeans
:
通过生成随机向量(在数据集值范围内)初始化k均值。
RandomlyGeneratedInitialMeans init = new RandomlyGeneratedInitialMeans(RandomFactory.DEFAULT);
是的,这是正常的。
答案 1 :(得分:2)
K-Means 假定随机初始化。在多次运行时获得不同的结果是理想。
如果您不想这样,使用固定的随机种子。
从您复制和粘贴的代码:
// To fix the random seed, use: new RandomFactory(seed);
这正是你应该做的......
long seed = 0;
RandomlyGeneratedInitialMeans init = new RandomlyGeneratedInitialMeans(
new RandomFactory(seed));
答案 2 :(得分:0)
评论太长了。正如@Idos所说,您正在随机初始化您的数据;这就是为什么你得到随机结果的原因。现在的问题是,您如何确保结果稳健?试试这个:
运行算法N
次。每次都记录每次观察的集群成员资格。完成后,将观察分类到最常包含它的群集中。例如,假设您有3个观察值,3个类,并运行算法3次:
obs R1 R2 R3
1 A A B
2 B B B
3 C B B
然后,您应将obs1
归类为A
,因为它通常被归类为A
。将obs2
归类为B
,因为它始终归类为B
。并将obs3
归类为B
,因为它通常被算法归类为B
。运行算法的次数越多,结果就越稳定。