替代numpy roll而不复制数组

时间:2016-03-10 12:13:22

标签: python performance numpy

我正在做类似代码的事情,我对np.roll()函数的性能不满意。我总结了baseArray和otherArray,其中baseArray在每次迭代中由一个元素滚动。但是当我滚动它时我不需要baseArray的副本,我宁愿选择一个视图,例如当我将baseArray与其他数组相加并且如果baseArray被滚动两次时,则basearray的第二个元素与第0个元素相加otherArray,baseArray的第3个元素与otherArray等的第1个元素相加。

即。实现与np.roll()相同的结果,但不复制数组。

import numpy as np
from numpy import random
import cProfile

def profile():
    baseArray = np.zeros(1000000)
    for i in range(1000):
        baseArray= np.roll(baseArray,1)
        otherArray= np.random.rand(1000000)
        baseArray=baseArray+otherArray

cProfile.run('profile()')

输出(注意第3行 - 滚动功能):

         9005 function calls in 26.741 seconds

   Ordered by: standard name

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        1    5.123    5.123   26.740   26.740 <ipython-input-101-9006a6c0d2e3>:5(profile)
        1    0.001    0.001   26.741   26.741 <string>:1(<module>)
     1000    0.237    0.000    8.966    0.009 numeric.py:1327(roll)
     1000    0.004    0.000    0.005    0.000 numeric.py:476(asanyarray)
        1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}
     1000   12.650    0.013   12.650    0.013 {method 'rand' of 'mtrand.RandomState' objects}
     1000    0.005    0.000    0.005    0.000 {method 'reshape' of 'numpy.ndarray' objects}
     1000    6.390    0.006    6.390    0.006 {method 'take' of 'numpy.ndarray' objects}
     2000    1.345    0.001    1.345    0.001 {numpy.core.multiarray.arange}
     1000    0.001    0.000    0.001    0.000 {numpy.core.multiarray.array}
     1000    0.985    0.001    0.985    0.001 {numpy.core.multiarray.concatenate}
        1    0.000    0.000    0.000    0.000 {numpy.core.multiarray.zeros}
        1    0.000    0.000    0.000    0.000 {range}

2 个答案:

答案 0 :(得分:2)

我很确定无法避免副本due to the way in which numpy arrays are represented internally。数组由连续的内存地址块和一些元数据组成,这些元数据包括数组维度,项目大小以及每个维度的元素之间的分隔(&#34; stride&#34;)。 &#34;滚动&#34;向前或向后的每个元素都需要沿同一维度具有不同的长度步幅,这是不可能的。

也就是说,您可以使用切片索引来避免复制baseArray中除一个元素之外的所有元素:

import numpy as np

def profile1(seed=0):
    gen = np.random.RandomState(seed)
    baseArray = np.zeros(1000000)
    for i in range(1000):
        baseArray= np.roll(baseArray,1)
        otherArray= gen.rand(1000000)
        baseArray=baseArray+otherArray
    return baseArray

def profile2(seed=0):
    gen = np.random.RandomState(seed)
    baseArray = np.zeros(1000000)
    for i in range(1000):
        otherArray = gen.rand(1000000)
        tmp1 = baseArray[:-1]               # view of the first n-1 elements
        tmp2 = baseArray[-1]                # copy of the last element
        baseArray[1:]=tmp1+otherArray[1:]   # write the last n-1 elements
        baseArray[0]=tmp2+otherArray[0]     # write the first element
    return baseArray

这些将得到相同的结果:

In [1]: x1 = profile1()

In [2]: x2 = profile2()

In [3]: np.allclose(x1, x2)
Out[3]: True

在实践中,性能没有太大差异:

In [4]: %timeit profile1()
1 loop, best of 3: 23.4 s per loop

In [5]: %timeit profile2()
1 loop, best of 3: 17.3 s per loop

答案 1 :(得分:0)

我的功能profile3()的速度提高了四倍。在累积期间,它使用带有递增移位的切片索引,而不是任何滚动。循环之后,单步滚动1000个元素将产生与其他功能相同的对齐方式。

import numpy as np
from timeit import timeit

def profile1(seed=0):
    gen = np.random.RandomState(seed)
    otherArray= gen.rand(1000000)           # outside the loop after Marcel's comment above
    baseArray = np.zeros(1000000)
    for i in range(1000):
        baseArray= np.roll(baseArray,1)
        baseArray=baseArray+otherArray
    return baseArray

def profile2(seed=0):
    gen = np.random.RandomState(seed)
    otherArray= gen.rand(1000000)
    baseArray = np.zeros(1000000)
    for i in range(1000):
        tmp1 = baseArray[:-1]               # view of the first n-1 elements
        tmp2 = baseArray[-1]                # copy of the last element
        baseArray[1:]=tmp1+otherArray[1:]   # write the last n-1 elements
        baseArray[0]=tmp2+otherArray[0]     # write the first element
    return baseArray

def profile3(seed=0):
    gen = np.random.RandomState(seed)
    otherArray= gen.rand(1000000)
    baseArray = np.zeros(1000000)
    for i in range(1,1001): # use % or itertools.cycle if range > shape
        baseArray[:-i] += otherArray[i:]
        baseArray[-i:] += otherArray[:i]
    return np.roll(baseArray,1000)

print(timeit(profile1,number=1))  # 7.0
print(timeit(profile2,number=1))  # 4.7
print(timeit(profile3,number=1))  # 1.2

x2 = profile2()
x3 = profile3()
print(np.allclose(x2, x3))  # True