我正在尝试修改Fibonacci凡人兔的python代码,以便根据他们的年龄改变兔子的繁殖力。 让我们举个例子。
我的兔子在3个月后成熟,6个月后死亡。在他们4个月的繁殖期间,他们根据年龄产生不同数量的后代。当他们3个月大时生产2对兔子,4个月生产3对兔子等,直到第6个月。每对兔子由雌性和雄性形成。最后,我会计算对的数量,而不是个人的数量。 从出生到死亡的繁殖价值:
fecundity = [0, 0, 2, 3, 3, 1]
我正在使用的python代码(https://github.com/jschendel/Rosalind/blob/master/011_FIBD.py)是:
n = 12
m = 6
#n = months to run
#m = how many months the rabbits live
# Populate the initial rabbits.
Rabbits = [1]+[0]*(m-1)
# Calculate the new rabbits (bunnies), in a given month.
# Start at use range(1,n) since our initial population is 0 month old.
for month in range(1, n):
Bunnies = 0
# Get the number of Rabbits able to old enough to give birth.
for j in range(1,m):
Bunnies += Rabbits[(month-j-1)%m]
# Bunnies replace the old rabbits who died.
Rabbits[(month)%m] = Bunnies
# Total rabbits is the sum of the living rabbits.
Total_Rabbits = sum(Rabbits)
我不确定如何实施繁殖力的变化。任何帮助表示赞赏!
谢谢你, 瓦伦蒂娜
答案 0 :(得分:2)
定义你的生殖力阵列在兔子死亡时停止:
fecundity = [0, 0, 2, 3, 3, 1]
意味着您的兔子在7个月大时死亡。 之后,您只需编写一个递归函数来计算特定步骤中new_borns的数量。我将步骤初始化为步骤0的1对,步骤0的步骤为0对。你当然可以改变它以适合你的情况。 (我称之为步骤是一个单位的时间,这里是月份)。 这是功能:
def new_borns(step):
if step < 0:
return 0
if step == 0:
return 1
nb_newborns = 0
# We create a loop on living pairs
for old_step in range(1, len(fecondity) +1):
nb_newborns += (fecundity[old_step -1]) * new_borns(step - old_step)
return nb_newborns
特定步骤的总人口数是前一步骤的新生儿总数,仍然存在(即,您的生育数组的长度)。
def FIBD(step):
population = 0
for i in range(len(fecundity)):
population += new_borns(step - i)
return population
要了解您在步骤7中拥有多少对,只需致电FIBD(7)
兔子可以居住的月数是繁殖阵列的长度。
当然,这种递归函数非常慢而且很糟糕。您需要一个缓存系统,以避免计算同一步骤的多次。这是要写的完整文件。
#!/usr/bin/env python
fecundity = [0, 0, 2, 3, 3, 1]
new_borns_cache = [1]
def new_borns(step):
if step < 0:
return 0
try :
return new_borns_cache[step]
except IndexError:
if step == 0:
return 1
sum = 0
for old_step in range(1, len(fecundity) +1):
sum += (fecundity[old_step -1]) * new_borns(step - old_step)
return sum
def fibd(step):
population = 0
for i in range(len(fecundity)):
population += new_borns(step - i)
return population
要使用它,只需导入,然后调用fibd(7)
答案 1 :(得分:0)
我自己找到了答案,我真的修改了之前发布的代码。我认为现在它更简单了
import numpy as np
m = 15
n = 18
fecundity = np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 1, 2, 1, 1, 1])
Bunnies = np.array([0]*m)
Rabbits = np.array([1]+[0]*(m-1))
for month in range(0, 18):
# every month I shift the list of 1 since they're getting older
Rabbits = np.roll(Rabbits, 1)
# I set the newborns as 0
Rabbits[0] = 0
# I calculate the newborns
Bunnies = Rabbits * fecundity
# and then I assign them to the rabbits 0 month old
Rabbits[0] = sum(Bunnies)
# the sum of Rabbits is the number of final pairs of Rabbits after n months
Total_Rabbits = sum(Rabbits)
# 26 Rabbits