我正在寻找基于特定分区聚合值的最佳方法,相当于
SUM(TotalCost) OVER(PARTITION BY ShopName) Earnings ( SQL server)
我可以通过Pandas中的以下步骤来做到这一点,但是寻找一种我确信应该存在的原生方法
TempDF= DF.groupby(by=['ShopName'])['TotalCost'].sum()
TempDF= TempDF.reset_index()
NewDF=pd.merge(DF , TempDF, how='inner', on='ShopName')
非常感谢您阅读!
答案 0 :(得分:16)
您可以在SQL聚合中使用pandas transform()方法,例如“OVER(partition by ...)”:
import pandas as pd
import numpy as np
#create dataframe with sample data
df = pd.DataFrame({'group':['A','A','A','B','B','B'],'value':[1,2,3,4,5,6]})
#calculate AVG(value) OVER (PARTITION BY group)
df['mean_value'] = df.groupby('group').value.transform(np.mean)
df:
group value mean_value
A 1 2
A 2 2
A 3 2
B 4 5
B 5 5
B 6 5