我目前正在r中运行lmer()以获得具有以下结构的数据集:
avgcobint=lmer(scale.logcptplus1 ~ scale.logdepth + scale.avgcobb + scale.logdepth:scale.avgcobb + (1|location) + (1|Fyear), data=cpt, REML=TRUE)
并收到以下有关固定效果的摘要:
Fixed effects:
Estimate Std. Error t value
(Intercept) -0.04868 0.15425 -0.316
scale.logdepth -0.32668 0.06168 -5.297
scale.avgcobb 0.11014 0.10478 1.051
scale.logdepth:scale.avgcobb 0.11689 0.06086 1.921
然后我用日志和缩放变量预测我的实际值估计值,用这个等式表示中值深度(14)...这是下图中正确的实际值线:
resultmeddepth14= -0.04868 + exp((-0.32668) * ((depth_median-mean(cpt$logdepth))/sd(cpt$logdepth))) + (0.11014 * ((cobb_range - mean(cpt$avgsummercobbleareakm))/sd(cpt$avgsummercobbleareakm))) + (0.11689 *(exp(((depth_median-mean(cpt$logdepth))/sd(cpt$logdepth))))*((cobb_range - mean(cpt$avgsummercobbleareakm))/sd(cpt$avgsummercobbleareakm)))
但是当我使用这些等式添加+/-一个标准误差线时:
MINUS SE
resultmeddepthminus= (-0.04868-0.15425) + exp((-0.32668-0.06168) * ((depth_median-mean(cpt$logdepth))/sd(cpt$logdepth))) + ((0.11014-0.10478) * ((cobb_range - mean(cpt$avgsummercobbleareakm))/sd(cpt$avgsummercobbleareakm))) + ((0.11689-0.06086) *(exp(((depth_median-mean(cpt$logdepth))/sd(cpt$logdepth))))*((cobb_range - mean(cpt$avgsummercobbleareakm))/sd(cpt$avgsummercobbleareakm)))
PLUS SE
resultmeddepthplus= (-0.04868+0.15425) + exp((-0.32668+0.06168) * ((depth_median-mean(cpt$logdepth))/sd(cpt$logdepth))) + ((0.11014+0.10478) * ((cobb_range - mean(cpt$avgsummercobbleareakm))/sd(cpt$avgsummercobbleareakm))) + ((0.11689+0.06086) *(exp(((depth_median-mean(cpt$logdepth))/sd(cpt$logdepth))))*((cobb_range - mean(cpt$avgsummercobbleareakm))/sd(cpt$avgsummercobbleareakm)))
我有这张图: lmer real estimates +/- one SE
并且所有线的交点都是x值0.068341709
为什么SE线相交?这里发生了什么,我该如何解决?