我正在尝试向Spark管道添加情绪分析程序。这样做时,我的课程延伸org.apache.spark.ml.PredictionModel
。扩展此PredictionModel
类时,我必须覆盖predict()
方法,该方法预测给定要素的标签。但是,当我执行此代码时,我总是得到0或1.例如,如果有10个电影评论,5个是负面评论而其他5个是否定评论,则将所有评论归类为否定。我附上了以下代码。
import org.apache.spark.ml.PredictionModel;
import org.apache.spark.ml.param.ParamMap;
import org.apache.spark.mllib.linalg.DenseVector;
import org.apache.spark.mllib.linalg.Vector;
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
import org.nd4j.linalg.api.buffer.DataBuffer;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.factory.Nd4j;
import java.io.*;
//Model produced by a ProbabilisticClassifier
public class MovieReviewClassifierModel extends PredictionModel<Object, MovieReviewClassifierModel> implements Serializable{
private static final long serialVersionUID = 1L;
private MultiLayerNetwork net;
MovieReviewClassifierModel (MultiLayerNetwork net) throws Exception {
this.net=net;
}
@Override
public MovieReviewClassifierModel copy(ParamMap args0) {
return null;
}
@Override
public String uid() {
return "MovieReviewClassifierModel";
}
public double raw2prediction(Vector rawPrediction) {//Given a vector of raw predictions, select the predicted label
return rawPrediction.toArray()[0];
}
@Override
public double predict(Object o) {
int prediction=0;
DenseVector v=(DenseVector)o;
double[] a=v.toArray();
INDArray arr=Nd4j.create(a);
INDArray array= net.output(arr,false);
DataBuffer ob = array.data();
double[] d=ob.asDouble();
double zeroProbability=d[0];
double oneProbability=d[1];
if (zeroProbability > oneProbability) {
prediction=0;
}
else{
prediction=1;
}
return prediction;
}
}
你能告诉我错误预测的理由吗?
答案 0 :(得分:0)
在public double predict(Object o)
中,您有以下if
声明:
if (zeroProbability > oneProbability) {
prediction=0;
}
else{
prediction=1;
}
导致返回0或1.更改此方法以获得一些其他预测值。