我有很多数据集需要排序并可能合并。数据由来自不同时间点的2D(x,y)数据组成,我想要做的是:
读取不同的时间点,看看我是否有来自同一时间点的多个(x,y)数据集。如果是这种情况,我想比较X轴,看看数据是否可以合并。
所有这一切我都可以在python中轻松完成 - 它可能不是很漂亮的代码,但似乎有效。问题在于,由于迭代数据集的方式,合并后的数据包含已汇总的数据的副本。这有点难以解释,所以让我用这个示例代码说明:
# define test data
times = ['10ms', '20ms','30ms','10ms', '10ms']
x_axis = np.atleast_2d(np.linspace(1,5,5)).T
data_sets = [np.concatenate((x_axis, np.random.rand(5,5)),axis=1) for num in range(5)]
def mergeData(times, data_sets):
data = []
pooled_times = []
repetitions_strings = ['','_2nd', '_3rd'] + ['_%ith' % num for num in range(3,30,1) ]
for num, item in enumerate(times):
if times.count(item) == 1:
# only one data-set with the current time point exist
pooled_times.append(item)
data.append(data_sets[num])
elif times.count(item) > 1:
# more than one occurence of this time point
# extract all the occurences and compare them
idx_different = 0 # dummy variable used to keep track of the numbers of different X-axis
idx_repetitions = item == np.array(times)
# lists do not accept lists of boolean index argument. find the number indices
num_repititions = np.linspace(0, len(idx_repetitions)-1, len(idx_repetitions))[idx_repetitions]
# *** get the data ***
temporary_data = [data_sets[int(num)] for num in num_repititions]
# either round off X-axis or change both tolerances in np.allclose()
X_axis_round = [np.round(temporary_data[int(num)][:,0],decimals=4) for num in range(len(temporary_data))]
# *** THIS IS WHERE THINGS GO BAD :((
# loop over X-axis and compare - note that last X-axis is NOT considered
# Deal with last X-axis separatetly
for idx1 in range(len(X_axis_round)-1):
pool = temporary_data[idx1]
removal_counter = int(0)
for idx2 in range(idx1+1,len(X_axis_round),len(X_axis_round)):
if len(X_axis_round[idx1]) == len(X_axis_round[idx2]) and np.allclose(X_axis_round[idx1],X_axis_round[idx2]):
# pool the data because the X-axis and time point is the same
pool = np.concatenate((pool, temporary_data[idx2][:,1:]),axis=1)
removal_counter += 1
# remove the time points included in the pool so they are not dublicated
# !!! TIME POINTS SEEMS TO BE REMOVED BUT DUPPLICATES ARE STILL OCCURING?!? !!!
index = int(num_repititions[idx2])
print 'Removing index: %i, delay %s' % (index, item)
times = [times[int(num)] for num in range(len(times)) if num is not index]
time_string = item + repetitions_strings[idx_different]
pooled_times.append(time_string)
data.append(pool)
idx_different += 1
# deal with last X-axis in case it is not pooled
if removal_counter + 1 < len(times): # True if last data-set could not be pooled
time_string = item + repetitions_strings[idx_different]
pooled_times.append(time_string)
data.append(temporary_data[-1])
index = num_repititions[-1]
times = [times[int(num)] for num in range(len(times)) if num is not index]
return pooled_times, data
正如你所看到的,我正在从列表中删除我正在迭代的条目(次),直觉上这听起来像是一个非常糟糕的主意。从我的测试看起来循环迭代原始Times列表中的所有条目,因此在循环期间删除不起作用 - 但我想不出更好的方法来做到这一点 - 输入将非常感激!
任何更聪明的方法来进行这种池化/合并,或者制作
for num, item in enumerate(times):
使用当前的'时间'列表而不是原始列表?
任何帮助都会非常受欢迎:)