在Python中有效减少多个张量

时间:2016-03-07 07:10:07

标签: python arrays algorithm numpy linear-algebra

我在Numpy中有四个多维张量v[i,j,k]a[i,s,l]w[j,s,t,m]x[k,t,n],而我正在尝试计算由下式给出的张量z[l,m,n]

z[l,m,n] = sum_{i,j,k,s,t} v[i,j,k] * a[i,s,l] * w[j,s,t,m] * x[k,t,n]

所有张量相对较小(总共少于32k个元素),但我需要多次执行此计算,所以我希望函数尽可能少地开销。

我尝试使用numpy.einsum这样实现它:

z = np.einsum('ijk,isl,jstm,ktn', v, a, w, x)

但是很慢。我还尝试了以下numpy.tensordot调用序列:

z = np.zeros((a.shape[-1],w.shape[-1],x.shape[-1]))
for s in range(a.shape[1]):
  for t in range(x.shape[1]):
    res = np.tensordot(v, a[:,s,:], (0,0))
    res = np.tensordot(res, w[:,s,t,:], (0,0))
    z += np.tensordot(res, x[:,s,:], (0,0))

在for for循环中加总stst都非常小,所以这不是太大的问题) 。这样做效果更好,但仍然没有我想象的那么快。我认为这可能是因为tensordot在获取实际产品之前需要在内部执行的所有操作(例如,置换轴)。

我想知道是否有更有效的方法在Numpy中实现这种操作。我也不介意在Cython中实现这个部分,但我不确定什么是正确的算法。

1 个答案:

答案 0 :(得分:4)

在部分中使用np.tensordot,您可以对事物进行矢量化 -

# Perform "np.einsum('ijk,isl->jksl', v, a)"
p1 = np.tensordot(v,a,axes=([0],[0]))         # shape = jksl

# Perform "np.einsum('jksl,jstm->kltm', p1, w)"
p2 = np.tensordot(p1,w,axes=([0,2],[0,1]))    # shape = kltm

# Perform "np.einsum('kltm,ktn->lmn', p2, w)"
z = np.tensordot(p2,x,axes=([0,2],[0,1]))     # shape = lmn

运行时测试并验证输出 -

In [15]: def einsum_based(v, a, w, x):
    ...:     return np.einsum('ijk,isl,jstm,ktn', v, a, w, x) # (l,m,n)
    ...: 
    ...: def vectorized_tdot(v, a, w, x):
    ...:     p1 = np.tensordot(v,a,axes=([0],[0]))        # shape = jksl
    ...:     p2 = np.tensordot(p1,w,axes=([0,2],[0,1]))   # shape = kltm
    ...:     return np.tensordot(p2,x,axes=([0,2],[0,1])) # shape = lmn
    ...: 

案例#1:

In [16]: # Input params
    ...: i,j,k,l,m,n = 10,10,10,10,10,10
    ...: s,t = 3,3 # As problem states : "both s and t are very small".
    ...: 
    ...: # Input arrays
    ...: v = np.random.rand(i,j,k)
    ...: a = np.random.rand(i,s,l)
    ...: w = np.random.rand(j,s,t,m)
    ...: x = np.random.rand(k,t,n)
    ...: 

In [17]: np.allclose(einsum_based(v, a, w, x),vectorized_tdot(v, a, w, x))
Out[17]: True

In [18]: %timeit einsum_based(v,a,w,x)
10 loops, best of 3: 129 ms per loop

In [19]: %timeit vectorized_tdot(v,a,w,x)
1000 loops, best of 3: 397 µs per loop

案例#2(更大的数据):

In [20]: # Input params
    ...: i,j,k,l,m,n = 15,15,15,15,15,15
    ...: s,t = 3,3 # As problem states : "both s and t are very small".
    ...: 
    ...: # Input arrays
    ...: v = np.random.rand(i,j,k)
    ...: a = np.random.rand(i,s,l)
    ...: w = np.random.rand(j,s,t,m)
    ...: x = np.random.rand(k,t,n)
    ...: 

In [21]: np.allclose(einsum_based(v, a, w, x),vectorized_tdot(v, a, w, x))
Out[21]: True

In [22]: %timeit einsum_based(v,a,w,x)
1 loops, best of 3: 1.35 s per loop

In [23]: %timeit vectorized_tdot(v,a,w,x)
1000 loops, best of 3: 1.52 ms per loop