假设我有一个2d正态分布,由协方差矩阵和中心定义。如何围绕原点旋转此分布?
例如:
theta = 90*pi/180 #Angle in radians
mu2 = c(mu[1]*cos(theta) - mu[2]*sin(theta),mu[2]*cos(theta) + mu[1]*sin(theta))
plot(mvrnorm(n=n, mu=mu2, Sigma=Sigma))
旋转分布的中心点相对容易:
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<title>Kendo UI Snippet</title>
<link rel="stylesheet" href="http://kendo.cdn.telerik.com/2016.1.112/styles/kendo.common.min.css" />
<link rel="stylesheet" href="http://kendo.cdn.telerik.com/2016.1.112/styles/kendo.rtl.min.css" />
<link rel="stylesheet" href="http://kendo.cdn.telerik.com/2016.1.112/styles/kendo.silver.min.css" />
<link rel="stylesheet" href="http://kendo.cdn.telerik.com/2016.1.112/styles/kendo.mobile.all.min.css" />
<script src="http://code.jquery.com/jquery-1.9.1.min.js"></script>
<script src="http://kendo.cdn.telerik.com/2016.1.112/js/kendo.all.min.js"></script>
<style type="text/css">
a {
cursor: pointer;
text-decoration: underline;
}
.k-grid-update {
display: none;
}
</style>
</head>
<body>
<script id="row-template" type="text/x-kendo-tmpl">
<a onclick="display('#=address#')">#=firstName#</a>
</script>
<script id="popup-editor" type="text/x-kendo-template">
#=address#
</script>
<div id="grid"></div>
<script>
$("#grid").kendoGrid({
columns: [
{ field: "id" },
{ field: "firstName", template: kendo.template($("#row-template").html()) },
{ field: "lastName" },
{ command: [{ name: "edit", text: { edit: "Address", cancel: "Close", update: "Close" } }]
}
],
dataSource: {
data: [
{ id: 1, firstName: "Jane", lastName: "Doe", address: "123 Street" },
{ id: 2, firstName: "John", lastName: "Doe", address: "456 Street" }
],
schema: {
model: { id: "id" }
}
},
editable: {
mode: "popup",
window: { title: 'Address' },
template: kendo.template($("#popup-editor").html())
}
});
function display(address) {
alert(address);
}
</script>
</body>
</html>
但是如何更改Sigma以旋转分布的方向?