Numpy仅按行重排多维数组,保持列顺序不变

时间:2016-02-26 08:30:28

标签: python arrays numpy shuffle

如何只在Python中按行对多维数组进行洗牌(所以不要随机播放列。)

我正在寻找最有效的解决方案,因为我的矩阵非常庞大。是否也可以在原始阵列上高效地工作(以节省内存)?

示例:

import numpy as np
X = np.random.random((6, 2))
print(X)
Y = ???shuffle by row only not colls???
print(Y)

我现在期待的是原始矩阵:

[[ 0.48252164  0.12013048]
 [ 0.77254355  0.74382174]
 [ 0.45174186  0.8782033 ]
 [ 0.75623083  0.71763107]
 [ 0.26809253  0.75144034]
 [ 0.23442518  0.39031414]]

输出将行不洗,例如:

[[ 0.45174186  0.8782033 ]
 [ 0.48252164  0.12013048]
 [ 0.77254355  0.74382174]
 [ 0.75623083  0.71763107]
 [ 0.23442518  0.39031414]
 [ 0.26809253  0.75144034]]

6 个答案:

答案 0 :(得分:29)

那是numpy.random.shuffle()的用途:

>>> X = np.random.random((6, 2))
>>> X
array([[ 0.9818058 ,  0.67513579],
       [ 0.82312674,  0.82768118],
       [ 0.29468324,  0.59305925],
       [ 0.25731731,  0.16676408],
       [ 0.27402974,  0.55215778],
       [ 0.44323485,  0.78779887]])

>>> np.random.shuffle(X)
>>> X
array([[ 0.9818058 ,  0.67513579],
       [ 0.44323485,  0.78779887],
       [ 0.82312674,  0.82768118],
       [ 0.29468324,  0.59305925],
       [ 0.25731731,  0.16676408],
       [ 0.27402974,  0.55215778]])

答案 1 :(得分:19)

您还可以使用np.random.permutation生成行索引的随机排列,然后使用带有X的{​​{3}}索引到axis=0行。此外,np.take有助于使用X选项覆盖输入数组out=本身,这将节省我们的内存。因此,实现看起来像这样 -

np.take(X,np.random.permutation(X.shape[0]),axis=0,out=X)

示例运行 -

In [23]: X
Out[23]: 
array([[ 0.60511059,  0.75001599],
       [ 0.30968339,  0.09162172],
       [ 0.14673218,  0.09089028],
       [ 0.31663128,  0.10000309],
       [ 0.0957233 ,  0.96210485],
       [ 0.56843186,  0.36654023]])

In [24]: np.take(X,np.random.permutation(X.shape[0]),axis=0,out=X);

In [25]: X
Out[25]: 
array([[ 0.14673218,  0.09089028],
       [ 0.31663128,  0.10000309],
       [ 0.30968339,  0.09162172],
       [ 0.56843186,  0.36654023],
       [ 0.0957233 ,  0.96210485],
       [ 0.60511059,  0.75001599]])

提升绩效

使用np.random.permutation(X.shape[0]) -

加快np.argsort()的速度
np.random.rand(X.shape[0]).argsort()

加速结果 -

In [32]: X = np.random.random((6000, 2000))

In [33]: %timeit np.random.permutation(X.shape[0])
1000 loops, best of 3: 510 µs per loop

In [34]: %timeit np.random.rand(X.shape[0]).argsort()
1000 loops, best of 3: 297 µs per loop

因此,可以将改组解决方案修改为 -

np.take(X,np.random.rand(X.shape[0]).argsort(),axis=0,out=X)

运行时测试 -

这些测试包括此帖中列出的两种方法以及基于np.take的基于np.shuffle的方法。

In [40]: X = np.random.random((6000, 2000))

In [41]: %timeit np.random.shuffle(X)
10 loops, best of 3: 25.2 ms per loop

In [42]: %timeit np.take(X,np.random.permutation(X.shape[0]),axis=0,out=X)
10 loops, best of 3: 53.3 ms per loop

In [43]: %timeit np.take(X,np.random.rand(X.shape[0]).argsort(),axis=0,out=X)
10 loops, best of 3: 53.2 ms per loop

所以,似乎使用这些np.take只能在内存成为问题的情况下使用,否则基于np.random.shuffle的解决方案就像是要走的路。

答案 2 :(得分:5)

经过一些实验后,我发现大多数内存和时间有效的方式来重新排列nd-array的数据(行方式),将索引洗牌并从混洗索引中获取数据

rand_num2 = np.random.randint(5, size=(6000, 2000))
perm = np.arange(rand_num2.shape[0])
np.random.shuffle(perm)
rand_num2 = rand_num2[perm]

更详细信息
在这里,我使用memory_profiler来查找内存使用情况和python的内置时间"用于记录时间和比较所有先前答案的模块

def main():
    # shuffle data itself
    rand_num = np.random.randint(5, size=(6000, 2000))
    start = time.time()
    np.random.shuffle(rand_num)
    print('Time for direct shuffle: {0}'.format((time.time() - start)))

    # Shuffle index and get data from shuffled index
    rand_num2 = np.random.randint(5, size=(6000, 2000))
    start = time.time()
    perm = np.arange(rand_num2.shape[0])
    np.random.shuffle(perm)
    rand_num2 = rand_num2[perm]
    print('Time for shuffling index: {0}'.format((time.time() - start)))

    # using np.take()
    rand_num3 = np.random.randint(5, size=(6000, 2000))
    start = time.time()
    np.take(rand_num3, np.random.rand(rand_num3.shape[0]).argsort(), axis=0, out=rand_num3)
    print("Time taken by np.take, {0}".format((time.time() - start)))

时间结果

Time for direct shuffle: 0.03345608711242676   # 33.4msec
Time for shuffling index: 0.019818782806396484 # 19.8msec
Time taken by np.take, 0.06726956367492676     # 67.2msec

内存分析器结果

Line #    Mem usage    Increment   Line Contents
================================================
    39  117.422 MiB    0.000 MiB   @profile
    40                             def main():
    41                                 # shuffle data itself
    42  208.977 MiB   91.555 MiB       rand_num = np.random.randint(5, size=(6000, 2000))
    43  208.977 MiB    0.000 MiB       start = time.time()
    44  208.977 MiB    0.000 MiB       np.random.shuffle(rand_num)
    45  208.977 MiB    0.000 MiB       print('Time for direct shuffle: {0}'.format((time.time() - start)))
    46                             
    47                                 # Shuffle index and get data from shuffled index
    48  300.531 MiB   91.555 MiB       rand_num2 = np.random.randint(5, size=(6000, 2000))
    49  300.531 MiB    0.000 MiB       start = time.time()
    50  300.535 MiB    0.004 MiB       perm = np.arange(rand_num2.shape[0])
    51  300.539 MiB    0.004 MiB       np.random.shuffle(perm)
    52  300.539 MiB    0.000 MiB       rand_num2 = rand_num2[perm]
    53  300.539 MiB    0.000 MiB       print('Time for shuffling index: {0}'.format((time.time() - start)))
    54                             
    55                                 # using np.take()
    56  392.094 MiB   91.555 MiB       rand_num3 = np.random.randint(5, size=(6000, 2000))
    57  392.094 MiB    0.000 MiB       start = time.time()
    58  392.242 MiB    0.148 MiB       np.take(rand_num3, np.random.rand(rand_num3.shape[0]).argsort(), axis=0, out=rand_num3)
    59  392.242 MiB    0.000 MiB       print("Time taken by np.take, {0}".format((time.time() - start)))

答案 3 :(得分:1)

您可以使用A函数按行对np.vectorize()的二维数组进行随机排列:

shuffle = np.vectorize(np.random.permutation, signature='(n)->(n)')

A_shuffled = shuffle(A)

答案 4 :(得分:1)

我尝试了许多解决方案,最后我使用了一个简单的解决方案:

from sklearn.utils import shuffle
x = np.array([[1, 2],
              [3, 4],
              [5, 6]])
print(shuffle(x, random_state=0))

输出:

[
[5 6]  
[3 4]  
[1 2]
]

如果您有3d数组,请遍历第一个轴(axis = 0)并应用此功能,例如:

np.array([shuffle(item) for item in 3D_numpy_array])

答案 5 :(得分:0)

我对此有一个疑问(或者也许是答案) 假设我们有一个numpy数组X,形状为((1000,60,11,1) 还要假设X是一个图像数组,尺寸为60x11,通道号= 1(60x11x1)。

如果我想混洗所有这些图像的顺序,并为此做些操作,我将对X的索引使用混洗。

def shuffling( X):
 indx=np.arange(len(X))          # create a array with indexes for X data
 np.random.shuffle(indx)
 X=X[indx]
 return X

那行得通吗?据我所知,len(X)将返回最大尺寸。