每行的快速列shuffle numpy

时间:2014-01-09 03:06:31

标签: python random numpy vectorization

我有一个包含行的10,000,000长度数组。我需要单独洗牌那些行。例如:

[[1,2,3]
 [1,2,3]
 [1,2,3]
 ...
 [1,2,3]]

[[3,1,2]
 [2,1,3]
 [1,3,2]
 ...
 [1,2,3]]

我正在使用

map(numpy.random.shuffle, array)

但它是一个python(而不是NumPy)循环,它占用了99%的执行时间。可悲的是,PyPy JIT没有实现numpypy.random,所以我运气不好。有没有更快的方法?我愿意使用任何库(pandasscikit-learnscipytheano等,只要它使用Numpy ndarray或衍生物。)

如果没有,我想我会使用Cython或C ++。

4 个答案:

答案 0 :(得分:7)

如果列的排列是可枚举的,那么你可以这样做:

import itertools as IT
import numpy as np

def using_perms(array):
    nrows, ncols = array.shape
    perms = np.array(list(IT.permutations(range(ncols))))
    choices = np.random.randint(len(perms), size=nrows)
    i = np.arange(nrows).reshape(-1, 1)
    return array[i, perms[choices]]

N = 10**7
array = np.tile(np.arange(1,4), (N,1))
print(using_perms(array))

收益率(类似)

[[3 2 1]
 [3 1 2]
 [2 3 1]
 [1 2 3]
 [3 1 2]
 ...
 [1 3 2]
 [3 1 2]
 [3 2 1]
 [2 1 3]
 [1 3 2]]

以下是将其与

进行比较的基准
def using_shuffle(array):
    map(numpy.random.shuffle, array)
    return array

In [151]: %timeit using_shuffle(array)
1 loops, best of 3: 7.17 s per loop

In [152]: %timeit using_perms(array)
1 loops, best of 3: 2.78 s per loop

编辑:CT朱的方法比我的快:

def using_Zhu(array):
    nrows, ncols = array.shape    
    all_perm = np.array((list(itertools.permutations(range(ncols)))))
    b = all_perm[np.random.randint(0, all_perm.shape[0], size=nrows)]
    return (array.flatten()[(b+3*np.arange(nrows)[...,np.newaxis]).flatten()]
            ).reshape(array.shape)

In [177]: %timeit using_Zhu(array)
1 loops, best of 3: 1.7 s per loop

这是朱的方法的略微变化,甚至可能更快一点:

def using_Zhu2(array):
    nrows, ncols = array.shape    
    all_perm = np.array((list(itertools.permutations(range(ncols)))))
    b = all_perm[np.random.randint(0, all_perm.shape[0], size=nrows)]
    return array.take((b+3*np.arange(nrows)[...,np.newaxis]).ravel()).reshape(array.shape)

In [201]: %timeit using_Zhu2(array)
1 loops, best of 3: 1.46 s per loop

答案 1 :(得分:7)

以下是一些想法:

In [10]: a=np.zeros(shape=(1000,3))

In [12]: a[:,0]=1

In [13]: a[:,1]=2

In [14]: a[:,2]=3

In [17]: %timeit map(np.random.shuffle, a)
100 loops, best of 3: 4.65 ms per loop

In [21]: all_perm=np.array((list(itertools.permutations([0,1,2]))))

In [22]: b=all_perm[np.random.randint(0,6,size=1000)]

In [25]: %timeit (a.flatten()[(b+3*np.arange(1000)[...,np.newaxis]).flatten()]).reshape(a.shape)
1000 loops, best of 3: 393 us per loop

如果只有几列,则所有可能排列的数量远小于数组中的行数(在这种情况下,当只有3列时,只有6种可能的排列)。使其更快的一种方法是首先进行所有排列,然后通过从所有可能的排列中随机选择一个排列来重新排列每一行。

即使尺寸较大,它仍然会快10倍:

#adjust a accordingly
In [32]: b=all_perm[np.random.randint(0,6,size=1000000)]

In [33]: %timeit (a.flatten()[(b+3*np.arange(1000000)[...,np.newaxis]).flatten()]).reshape(a.shape)
1 loops, best of 3: 348 ms per loop

In [34]: %timeit map(np.random.shuffle, a)
1 loops, best of 3: 4.64 s per loop

答案 2 :(得分:0)

您还可以在apply

中尝试pandas功能
import pandas as pd

df = pd.DataFrame(array)
df = df.apply(lambda x:np.random.shuffle(x) or x, axis=1)

然后从数据框中提取numpy数组

print df.values

答案 3 :(得分:0)

我相信我有一个替代的,等效的策略,建立在以前的答案之上:

# original sequence
a0 = np.arange(3) + 1

# length of original sequence
L = a0.shape[0]

# number of random samples/shuffles
N_samp = 1e4

# from above
all_perm = np.array( (list(itertools.permutations(np.arange(L)))) )
b = all_perm[np.random.randint(0, len(all_perm), size=N_samp)]

# index a with b for each row of b and collapse down to expected dimension
a_samp = a0[np.newaxis, b][0]

我不确定这是如何比较性能的,但我喜欢它的可读性。