pandas将嵌套值与其他列一起切片

时间:2016-02-20 11:35:55

标签: python json python-2.7 numpy pandas

我正在尝试从json数据下面获取嵌套值。

{
    "region_id": 60763,
    "phone": "",
    "address": {
        "region": "NY",
        "street-address": "147 West 43rd Street",
        "postal-code": "10036",
        "locality": "New York City"
    },
    "id": 113317,
    "name": "Casablanca Hotel Times Square"
}
{
    "region_id": 32655,
    "phone": "",
    "address": {
        "region": "CA",
        "street-address": "300 S Doheny Dr",
        "postal-code": "90048",
        "locality": "Los Angeles"
    },
    "id": 76049,
    "name": "Four Seasons Hotel Los Angeles at Beverly Hills"
}

我只是使用以下方法将上述数据加载到我的pandas数据框中:

with open("file path") as f:
    df = pd.DataFrame(json.loads(line) for line in f)

现在我的数据框看起来像这样:

   address                                              Phone
0  {u'region': u'NY', u'street-address': u'147 We...      
1  {u'region': u'CA', u'street-address': u'300 S ...   

       id                                             name  region_id
0  113317                    Casablanca Hotel Times Square  60763   
1   76049  Four Seasons Hotel Los Angeles at Beverly Hills  32655   

我可以使用这个 - data = df[['id', 'name']]

获取列子集

但不确定我如何获得regionstreet-address以及idname的值。我的输出数据框应该有id, name, region, street-address

注意:我尝试弹出并将此嵌套列address与我的数据框连接起来。但是由于我的数据量很大--348MB,因此当我逐列扫描时,连接会占用大量内存 - (轴-1)。

此外,我正在寻找一种有效的方法来处理这个,我应该使用Numpy,它将直接使用C扩展。或者写入MongoDB等数据库。我正在考虑这个问题,因为在对这些数据进行子集化之后,我需要基于id列加入这个其他数据集以获得其他几个字段。

4 个答案:

答案 0 :(得分:3)

以下方法可行(但是,我在下面添加了一个更有效的解决方案;只需向下滚动到编辑):

import pandas as pd

# read the updated json file
df = pd.read_json('data.json')

# convert column with the nested json structure
tempdf = pd.concat([pd.DataFrame.from_dict(item, orient='index').T for item in df.address])

# get rid of the converted column
df.drop('address', 1, inplace=True)

# prepare concat
tempdf.index = df.index

# merge the two dataframes back together
df = pd.concat([df, tempdf], axis=1)

输出:

       id                                             name phone  region_id  \
0  113317                    Casablanca Hotel Times Square            60763   
1   76049  Four Seasons Hotel Los Angeles at Beverly Hills            32655   

  region        street-address postal-code       locality  
0     NY  147 West 43rd Street       10036  New York City  
1     CA       300 S Doheny Dr       90048    Los Angeles 

现在,您可以使用drop命令删除不需要的列。

我修改了你实际上无效的json文件;你可以检查它,例如在JSONLint

[{
    "region_id": 60763,
    "phone": "",
    "address": {
        "region": "NY",
        "street-address": "147 West 43rd Street",
        "postal-code": "10036",
        "locality": "New York City"
    },
    "id": 113317,
    "name": "Casablanca Hotel Times Square"
}, {
    "region_id": 32655,
    "phone": "",
    "address": {
        "region": "CA",
        "street-address": "300 S Doheny Dr",
        "postal-code": "90048",
        "locality": "Los Angeles"
    },
    "id": 76049,
    "name": "Four Seasons Hotel Los Angeles at Beverly Hills"
}]

修改

建立@ MaxU的答案(这对我不起作用),您还可以执行以下操作:

import pandas as pd
import ujson
from pandas.io.json import json_normalize

# this is the json file from above
with open('data.json') as f:
    data = ujson.load(f)

现在,正如@MaxU所提议的,您可以使用json_normalize来摆脱嵌套结构:

df3 = json_normalize(data)

这会给你:

  address.locality address.postal-code address.region address.street-address      id                                             name phone  region_id
0    New York City               10036             NY   147 West 43rd Street  113317                    Casablanca Hotel Times Square            60763
1      Los Angeles               90048             CA        300 S Doheny Dr   76049  Four Seasons Hotel Los Angeles at Beverly Hills            32655

您可以像这样重命名要保留的列:

df3.rename(columns={'address.region': 'region', 'address.street-address': 'street-address'}, inplace=True)

然后选择您要保留的列:

df3 = df3[['id', 'name', 'region', 'street-address']]

为您提供所需的输出:

       id                                             name region        street-address
0  113317                    Casablanca Hotel Times Square     NY  147 West 43rd Street
1   76049  Four Seasons Hotel Los Angeles at Beverly Hills     CA       300 S Doheny Dr

答案 1 :(得分:2)

小助手功能可以解决这个问题:

def get_entries(line):
    data = json.loads(line)
    res = {k: data[k] for k in ['id', 'name']}
    res.update({k: data['address'][k] for k in ['region', 'street-address']})
    return res

with open("file path") as f:
    df = pd.DataFrame(get_entries(line) for line in f)

输出:

       id                                             name region  \
0  113317                    Casablanca Hotel Times Square     NY   
1   76049  Four Seasons Hotel Los Angeles at Beverly Hills     CA   

         street-address  
0  147 West 43rd Street  
1       300 S Doheny Dr  

或者,看起来好一点:

enter image description here

答案 2 :(得分:2)

原生熊猫解决方案 - pandas.io.json.json_normalize()

已更正且正常工作版本:

import ujson
import pandas as pd
from pandas.io.json import json_normalize

pd.set_option('display.expand_frame_repr', False)

with open('aaa') as f:
    data = ujson.load(f)

df = json_normalize(data)[['id', 'name', 'address.region', 'address.street-address']].rename(columns={'address.region': 'region', 'address.street-address': 'street-address'})
print(df)

输出:

       id                                             name region        street-address
0  113317                    Casablanca Hotel Times Square     NY  147 West 43rd Street
1   76049  Four Seasons Hotel Los Angeles at Beverly Hills     CA       300 S Doheny Dr

NOT WORKING版本(正如Cleb指出的那样):

import ujson
from pandas.io.json import json_normalize

with open('data.json') as f:
    data = ujson.load(f)

df = json_normalize(data, 'address', ['region', 'street-address'])

pd.set_option('display.expand_frame_repr', False)
print(df)

或者,你可以使用ujson(超快速JSON)来生成字典列表,然后从中生成一个DataFrame:

import ujson
import pandas as pd

data_list = []

with open('data.json') as f:
    for line in f:
        d = ujson.loads(line)
        data_list.append(
            {"id":d["id"],
             "name":d["name"],
             "region":d["address"]["region"],
             "street-address":d["address"]["street-address"]
            }
        )

df = pd.DataFrame(data_list)

pd.set_option('display.expand_frame_repr', False)
print(df)

我不知道哪种解决方案会更有效/更快 - 请尝试对付您的实际数据(348MiB)并给我们一个简短的反馈。

PS如果可能的话,只调用一次pd.DataFrame / pd.read_json,否则会慢得多。

输出:

       id                                             name region        street-address
0  113317                    Casablanca Hotel Times Square     NY  147 West 43rd Street
1   76049  Four Seasons Hotel Los Angeles at Beverly Hills     CA       300 S Doheny Dr

答案 3 :(得分:2)

首先,使用id的{​​{1}}和name列创建新的数据框。然后遍历每个目标字段(均位于df)并应用address函数从字典中获取项目。

lambda