我有一个看起来像这样的数据集
a_id b_received brand_id c_consumed type_received date output \
0 sam soap bill oil edibles 2011-01-01 1
1 sam oil chris NaN utility 2011-01-02 1
2 sam brush dan soap grocery 2011-01-03 0
3 harry oil sam shoes clothing 2011-01-04 1
4 harry shoes bill oil edibles 2011-01-05 1
5 alice beer sam eggs breakfast 2011-01-06 0
6 alice brush chris brush cleaning 2011-01-07 1
7 alice eggs NaN NaN edibles 2011-01-08 1
我正在使用以下代码
def probability(x):
y=[]
for i in range(len(x)):
y.append(float(x[i])/float(len(x)))
return y
df2['prob']= (df2.groupby('a_id')
.apply(probability(['output']))
.reset_index(level='a_id', drop=True))
理想的结果应该是具有以下值的新列
prob
0 0.333334
1 0.333334
2 0.0
3 0.5
4 0.5
5 0
6 0.333334
7 0.333334
但是我收到了错误
y.append(float(x[i])/float(len(x)))
ValueError: could not convert string to float: output
列输出为int格式。我不明白为什么我会收到这个错误。
我正在尝试计算消耗产品的每个人的输出概率,这是由列输出给出的。例如,如果山姆接受了肥皂,并且栏中也存在肥皂,那就是“消费者”。然后结果为1,否则结果为0.
现在,由于山姆收到3件他消耗2的产品,每件产品的消费概率为1/3。因此输出为1的概率应为0.333334,输出为0的概率应为0。
如何达到预期效果?
答案 0 :(得分:1)
我认为你可以简单地将output
列与已经计算的分组GroupBy
一起传递给.groupby('a_id')['output']
对象,然后使用函数probability
,它只返回除列output
及其len
:
def probability(x):
#print x
return x / len(x)
df2['prob']= (df2.groupby('a_id')['output']
.apply(probability)
.reset_index(level='a_id', drop=True))
或lambda
:
df2['prob']= (df2.groupby('a_id')['output']
.apply(lambda x: x / len(x) )
.reset_index(level='a_id', drop=True))
更简单,更快速的解决方案是使用transform
:
df2['prob']= df2['output'] / df2.groupby('a_id')['output'].transform('count')
print df2
a_id b_received brand_id c_consumed type_received date output \
0 sam soap bill oil edibles 2011-01-01 1
1 sam oil chris NaN utility 2011-01-02 1
2 sam brush dan soap grocery 2011-01-03 0
3 harry oil sam shoes clothing 2011-01-04 1
4 harry shoes bill oil edibles 2011-01-05 1
5 alice beer sam eggs breakfast 2011-01-06 0
6 alice brush chris brush cleaning 2011-01-07 1
7 alice eggs NaN NaN edibles 2011-01-08 1
prob
0 0.333333
1 0.333333
2 0.000000
3 0.500000
4 0.500000
5 0.000000
6 0.333333
7 0.333333
<强>计时强>:
In [505]: %timeit (df2.groupby('a_id')['output'].apply(lambda x: x / len(x) ).reset_index(level='a_id', drop=True))
The slowest run took 10.99 times longer than the fastest. This could mean that an intermediate result is being cached
100 loops, best of 3: 1.73 ms per loop
In [506]: %timeit df2['output'] / df2.groupby('a_id')['output'].transform('count')
The slowest run took 5.03 times longer than the fastest. This could mean that an intermediate result is being cached
1000 loops, best of 3: 449 µs per loop