Python:计算pandas系列中值的累积出现次数

时间:2016-02-18 14:32:25

标签: python pandas

我有一个如下所示的DataFrame:

    fruit
0  orange
1  orange
2  orange
3    pear
4  orange
5   apple
6   apple
7    pear
8    pear
9  orange

我想添加一个列,计算每个值的累计出现次数,即

    fruit  cum_count
0  orange          1
1  orange          2
2  orange          3
3    pear          1
4  orange          4
5   apple          1
6   apple          2
7    pear          2
8    pear          3
9  orange          5

目前我这样做:

df['cum_count'] = [(df.fruit[0:i+1] == x).sum() for i, x in df.fruit.iteritems()]

...这对10行很好,但是当我尝试用几百万行做同样的事情时需要很长时间。有没有更有效的方法来做到这一点?

2 个答案:

答案 0 :(得分:4)

您可以使用groupbycumcount

df['cum_count'] = df.groupby('fruit').cumcount() + 1

In [16]: df
Out[16]:
    fruit  cum_count
0  orange          1
1  orange          2
2  orange          3
3    pear          1
4  orange          4
5   apple          1
6   apple          2
7    pear          2
8    pear          3
9  orange          5

<强>时序

In [8]: %timeit [(df.fruit[0:i+1] == x).sum() for i, x in df.fruit.iteritems()]
100 loops, best of 3: 3.76 ms per loop

In [9]: %timeit df.groupby('fruit').cumcount() + 1
1000 loops, best of 3: 926 µs per loop

所以4次更快。

答案 1 :(得分:1)

使用带有groupbycumcount和指定列可能更好,因为它更有效:

df['cum_count'] = df.groupby('fruit' )['fruit'].cumcount() + 1
print df

    fruit  cum_count
0  orange          1
1  orange          2
2  orange          3
3    pear          1
4  orange          4
5   apple          1
6   apple          2
7    pear          2
8    pear          3
9  orange          5

比较len(df) = 10,我的解决方案是最快的:

In [3]: %timeit df.groupby('fruit')['fruit'].cumcount() + 1
The slowest run took 11.67 times longer than the fastest. This could mean that an intermediate result is being cached 
1000 loops, best of 3: 299 µs per loop

In [4]: %timeit df.groupby('fruit').cumcount() + 1
The slowest run took 12.78 times longer than the fastest. This could mean that an intermediate result is being cached 
1000 loops, best of 3: 921 µs per loop

In [5]: %timeit [(df.fruit[0:i+1] == x).sum() for i, x in df.fruit.iteritems()]
The slowest run took 4.47 times longer than the fastest. This could mean that an intermediate result is being cached 
100 loops, best of 3: 2.72 ms per loop

比较len(df) = 10k

In [7]: %timeit df.groupby('fruit')['fruit'].cumcount() + 1
The slowest run took 4.65 times longer than the fastest. This could mean that an intermediate result is being cached 
1000 loops, best of 3: 845 µs per loop

In [8]: %timeit df.groupby('fruit').cumcount() + 1
The slowest run took 5.59 times longer than the fastest. This could mean that an intermediate result is being cached 
100 loops, best of 3: 1.59 ms per loop

In [9]: %timeit [(df.fruit[0:i+1] == x).sum() for i, x in df.fruit.iteritems()]
1 loops, best of 3: 5.12 s per loop