现在,我是带有2类数据的火车网络...但是在第一次迭代后精度是恒定的1!
输入数据是灰度图像。当HDF5Data创建时,两个类图像都是随机选择的。
为什么会这样?怎么了,错在哪里!
network.prototxt:
name: "brainMRI"
layer {
name: "data"
type: "HDF5Data"
top: "data"
top: "label"
include: {
phase: TRAIN
}
hdf5_data_param {
source: "/home/shivangpatel/caffe/brainMRI1/train_file_location.txt"
batch_size: 10
}
}
layer {
name: "data"
type: "HDF5Data"
top: "data"
top: "label"
include: {
phase: TEST
}
hdf5_data_param {
source: "/home/shivangpatel/caffe/brainMRI1/test_file_location.txt"
batch_size: 10
}
}
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
convolution_param {
num_output: 20
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv2"
type: "Convolution"
bottom: "pool1"
top: "conv2"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
convolution_param {
num_output: 50
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "pool2"
type: "Pooling"
bottom: "conv2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "ip1"
type: "InnerProduct"
bottom: "pool2"
top: "ip1"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
inner_product_param {
num_output: 500
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "ip1"
top: "ip1"
}
layer {
name: "ip2"
type: "InnerProduct"
bottom: "ip1"
top: "ip2"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
inner_product_param {
num_output: 2
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "softmax"
type: "Softmax"
bottom: "ip2"
top: "smip2"
}
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "ip2"
bottom: "label"
top: "loss"
}
layer {
name: "accuracy"
type: "Accuracy"
bottom: "smip2"
bottom: "label"
top: "accuracy"
include {
phase: TEST
}
}
输出:
I0217 17:41:07.912580 2913 net.cpp:270] This network produces output loss I0217 17:41:07.912607 2913 net.cpp:283] Network initialization done. I0217 17:41:07.912739 2913 solver.cpp:60] Solver scaffolding done. I0217 17:41:07.912789 2913 caffe.cpp:212] Starting Optimization I0217 17:41:07.912813 2913 solver.cpp:288] Solving brainMRI I0217 17:41:07.912832 2913 solver.cpp:289] Learning Rate Policy: inv I0217 17:41:07.920737 2913 solver.cpp:341] Iteration 0, Testing net (#0) I0217 17:41:08.235076 2913 solver.cpp:409] Test net output #0: accuracy = 0.98 I0217 17:41:08.235194 2913 solver.cpp:409] Test net output #1: loss = 0.0560832 (* 1 = 0.0560832 loss) I0217 17:41:35.831647 2913 solver.cpp:341] Iteration 100, Testing net (#0) I0217 17:41:36.140849 2913 solver.cpp:409] Test net output #0: accuracy = 1 I0217 17:41:36.140949 2913 solver.cpp:409] Test net output #1: loss = 0.00757247 (* 1 = 0.00757247 loss) I0217 17:42:05.465395 2913 solver.cpp:341] Iteration 200, Testing net (#0) I0217 17:42:05.775877 2913 solver.cpp:409] Test net output #0: accuracy = 1 I0217 17:42:05.776000 2913 solver.cpp:409] Test net output #1: loss = 0.0144996 (* 1 = 0.0144996 loss) ............. .............
答案 0 :(得分:7)
总结评论中的一些信息:
- 您以test_interval:100
次迭代的间隔运行测试
- 每个测试间隔超过test_iter:5
* batch_size:10
= 50个样本
- 您的列车和测试集似乎非常不合适:所有的阴性样本(标签= 0)在所有阳性样本之前被组合在一起。
考虑你的SGD迭代求解器,你在训练期间给它批量batch_size:10
。在任何阳性样本之前,您的训练集有14,746个阴性样本(即1474个批次)。因此,对于前1474次迭代,您的求解器只能看到"反面的例子,没有积极的例子
你期望这个解算器会学到什么?
你的求解器只看到负面的例子,因此得知无论输入是什么,它都应输出" 0"。您的测试集也以相同的方式排序,因此在每个test_interval仅测试50个样本,您只测试测试集中的负面示例,得到完美的准确度为1。 但正如你所说,你的网络实际上什么也没学到。
我想你已经猜到了现在的解决方案。您需要随机播放训练集,并在整个测试集上测试您的网络。