这是我第一次尝试使用Matplotlib,我需要一些指导。我试图用4个y轴生成图,左边两个,右边两个共享x轴。这是我在共享保管箱文件夹
上的数据集import pandas as pd
%matplotlib inline
url ='http://dropproxy.com/f/D34'
df= pd.read_csv(url, index_col=0, parse_dates=[0])
df.plot()
这就是简单的熊猫情节:
我想将此绘制类似于下面的示例,在主y轴上使用TMAX和TMIN(在相同比例上)。
我的尝试:
我在matplotlib listserv找到了一个例子。我正在尝试将其改编为我的数据,但有些东西不正常......这就是脚本。
# multiple_yaxes_with_spines.py
# This is a template Python program for creating plots (line graphs) with 2, 3,
# or 4 y-axes. (A template program is one that you can readily modify to meet
# your needs). Almost all user-modifiable code is in Section 2. For most
# purposes, it should not be necessary to modify anything else.
# Dr. Phillip M. Feldman, 27 Oct, 2009
# Acknowledgment: This program is based on code written by Jae-Joon Lee,
# URL= http://matplotlib.svn.sourceforge.net/viewvc/matplotlib/trunk/matplotlib/
# examples/pylab_examples/multiple_yaxis_with_spines.py?revision=7908&view=markup
# Section 1: Import modules, define functions, and allocate storage.
import matplotlib.pyplot as plt
from numpy import *
def make_patch_spines_invisible(ax):
ax.set_frame_on(True)
ax.patch.set_visible(False)
for sp in ax.spines.itervalues():
sp.set_visible(False)
def make_spine_invisible(ax, direction):
if direction in ["right", "left"]:
ax.yaxis.set_ticks_position(direction)
ax.yaxis.set_label_position(direction)
elif direction in ["top", "bottom"]:
ax.xaxis.set_ticks_position(direction)
ax.xaxis.set_label_position(direction)
else:
raise ValueError("Unknown Direction : %s" % (direction,))
ax.spines[direction].set_visible(True)
# Create list to store dependent variable data:
y= [0, 0, 0, 0, 0]
# Section 2: Define names of variables and the data to be plotted.
# `labels` stores the names of the independent and dependent variables). The
# first (zeroth) item in the list is the x-axis label; remaining labels are the
# first y-axis label, second y-axis label, and so on. There must be at least
# two dependent variables and not more than four.
labels= ['Date', 'Maximum Temperature', 'Solar Radiation',
'Rainfall', 'Minimum Temperature']
# Plug in your data here, or code equations to generate the data if you wish to
# plot mathematical functions. x stores values of the independent variable;
# y[1], y[2], ... store values of the dependent variable. (y[0] is not used).
# All of these objects should be NumPy arrays.
# If you are plotting mathematical functions, you will probably want an array of
# uniformly spaced values of x; such an array can be created using the
# `linspace` function. For example, to define x as an array of 51 values
# uniformly spaced between 0 and 2, use the following command:
# x= linspace(0., 2., 51)
# Here is an example of 6 experimentally measured y1-values:
# y[1]= array( [3, 2.5, 7.3e4, 4, 8, 3] )
# Note that the above statement requires both parentheses and square brackets.
# With a bit of work, one could make this program read the data from a text file
# or Excel worksheet.
# Independent variable:
x = df.index
# First dependent variable:
y[1]= df['TMAX']
# Second dependent variable:
y[2]= df['RAD']
y[3]= df['RAIN']
y[4]= df['TMIN']
# Set line colors here; each color can be specified using a single-letter color
# identifier ('b'= blue, 'r'= red, 'g'= green, 'k'= black, 'y'= yellow,
# 'm'= magenta, 'y'= yellow), an RGB tuple, or almost any standard English color
# name written without spaces, e.g., 'darkred'. The first element of this list
# is not used.
colors= [' ', '#C82121', '#E48E3C', '#4F88BE', '#CF5ADC']
# Set the line width here. linewidth=2 is recommended.
linewidth= 2
# Section 3: Generate the plot.
N_dependents= len(labels) - 1
if N_dependents > 4: raise Exception, \
'This code currently handles a maximum of four independent variables.'
# Open a new figure window, setting the size to 10-by-7 inches and the facecolor
# to white:
fig= plt.figure(figsize=(16,9), dpi=120, facecolor=[1,1,1])
host= fig.add_subplot(111)
host.set_xlabel(labels[0])
# Use twinx() to create extra axes for all dependent variables except the first
# (we get the first as part of the host axes). The first element of y_axis is
# not used.
y_axis= (N_dependents+2) * [0]
y_axis[1]= host
for i in range(2,len(labels)+1): y_axis[i]= host.twinx()
if N_dependents >= 3:
# The following statement positions the third y-axis to the right of the
# frame, with the space between the frame and the axis controlled by the
# numerical argument to set_position; this value should be between 1.10 and
# 1.2.
y_axis[3].spines["right"].set_position(("axes", 1.15))
make_patch_spines_invisible(y_axis[3])
make_spine_invisible(y_axis[3], "right")
plt.subplots_adjust(left=0.0, right=0.8)
if N_dependents >= 4:
# The following statement positions the fourth y-axis to the left of the
# frame, with the space between the frame and the axis controlled by the
# numerical argument to set_position; this value should be between 1.10 and
# 1.2.
y_axis[4].spines["left"].set_position(("axes", -0.15))
make_patch_spines_invisible(y_axis[4])
make_spine_invisible(y_axis[4], "left")
plt.subplots_adjust(left=0.2, right=0.8)
p= (N_dependents+1) * [0]
# Plot the curves:
for i in range(1,N_dependents+1):
p[i], = y_axis[i].plot(x, y[i], colors[i],
linewidth=linewidth, label=labels[i])
# Set axis limits. Use ceil() to force upper y-axis limits to be round numbers.
host.set_xlim(x.min(), x.max())
host.set_xlabel(labels[0], size=16)
for i in range(1,N_dependents+1):
y_axis[i].set_ylim(0.0, ceil(y[i].max()))
y_axis[i].set_ylabel(labels[i], size=16)
y_axis[i].yaxis.label.set_color(colors[i])
for sp in y_axis[i].spines.itervalues():
sp.set_color(colors[i])
for obj in y_axis[i].yaxis.get_ticklines():
# `obj` is a matplotlib.lines.Line2D instance
obj.set_color(colors[i])
obj.set_markeredgewidth(3)
for obj in y_axis[i].yaxis.get_ticklabels():
obj.set_color(colors[i])
obj.set_size(12)
obj.set_weight(600)
# To enable the legend, uncomment the following two lines:
lines= p[1:]
host.legend(lines, [l.get_label() for l in lines])
plt.draw(); plt.show()
输出
如何将比例放在最大和最小温度上?另外,如何摆脱黑色的第二个y轴,从0到10?
有没有更简单的方法来实现这个目标?
答案 0 :(得分:1)
如何将最大和最小温度上的刻度放在相同的刻度上?
将它们绘制在相同的轴上。
另外,如何摆脱黑色的第二个y轴,从0到10?
不要创建那些轴。
您想要绘制四个变量,其中两个可以放在同一个子图中,因此您只需要三个子图。但你创造了五个呢?
请记住:不同的y尺度< - >不同的子图共享x轴。
两个具有共同比例的变量(左),两个具有独立比例的变量(右)。
Content-Security-Policy
。绘制您想要的所有内容,例如问题中所述的TMIN和TMAX。ax1
的双子图。绘制第三个变量,比如说RAIN。twinx(ax=ax1)
。绘制第四个变量' RAD'。未经请求的建议:不要试图修复您不理解的代码。
答案 1 :(得分:0)
原始图表的变化显示如何在多个轴上绘制变量
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
url ='http://dropproxy.com/f/D34'
df= pd.read_csv(url, index_col=0, parse_dates=[0])
fig = plt.figure()
ax = fig.add_subplot(111) # Primary y
ax2 = ax.twinx() # Secondary y
# Plot variables
ax.plot(df.index, df['TMAX'], color='red')
ax.plot(df.index, df['TMIN'], color='green')
ax2.plot(df.index, df['RAIN'], color='orange')
ax2.plot(df.index, df['RAD'], color='yellow')
# Custom ylimit
ax.set_ylim(0,50)
# Custom x axis date formats
import matplotlib.dates as mdates
ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y'))
答案 2 :(得分:0)
我修改了@ bishopo的建议来生成我想要的东西,但是,该图还需要对轴标签的字体大小进行一些调整。
这是我到目前为止所做的工作。
import pandas as pd
%matplotlib inline
url ='http://dropproxy.com/f/D34'
df= pd.read_csv(url, index_col=0, parse_dates=[0])
from mpl_toolkits.axes_grid1 import host_subplot
import mpl_toolkits.axisartist as AA
import matplotlib.pyplot as plt
if 1:
# Set the figure size, dpi, and background color
fig = plt.figure(1, (16,9),dpi =300, facecolor = 'W',edgecolor ='k')
# Update the tick label size to 12
plt.rcParams.update({'font.size': 12})
host = host_subplot(111, axes_class=AA.Axes)
plt.subplots_adjust(right=0.75)
par1 = host.twinx()
par2 = host.twinx()
par3 = host.twinx()
offset = 60
new_fixed_axis = par2.get_grid_helper().new_fixed_axis
new_fixed_axis1 = host.get_grid_helper().new_fixed_axis
par2.axis["right"] = new_fixed_axis(loc="right",
axes=par2,
offset=(offset, 0))
par3.axis["left"] = new_fixed_axis1(loc="left",
axes=par3,
offset=(-offset, 0))
par2.axis["right"].toggle(all=True)
par3.axis["left"].toggle(all=True)
par3.axis["right"].set_visible(False)
# Set limit on both y-axes
host.set_ylim(-30, 50)
par3.set_ylim(-30,50)
host.set_xlabel("Date")
host.set_ylabel("Minimum Temperature ($^\circ$C)")
par1.set_ylabel("Solar Radiation (W$m^{-2}$)")
par2.set_ylabel("Rainfall (mm)")
par3.set_ylabel('Maximum Temperature ($^\circ$C)')
p1, = host.plot(df.index,df['TMIN'], 'm,')
p2, = par1.plot(df.index, df.RAD, color ='#EF9600', linestyle ='--')
p3, = par2.plot(df.index, df.RAIN, '#09BEEF')
p4, = par3.plot(df.index, df['TMAX'], '#FF8284')
par1.set_ylim(0, 36)
par2.set_ylim(0, 360)
host.legend()
host.axis["left"].label.set_color(p1.get_color())
par1.axis["right"].label.set_color(p2.get_color())
par2.axis["right"].label.set_color(p3.get_color())
par3.axis["left"].label.set_color(p4.get_color())
tkw = dict(size=5, width=1.5)
host.tick_params(axis='y', colors=p1.get_color(), **tkw)
par1.tick_params(axis='y', colors=p2.get_color(), **tkw)
par2.tick_params(axis='y', colors=p3.get_color(), **tkw)
par3.tick_params(axis='y', colors=p4.get_color(), **tkw)
host.tick_params(axis='x', **tkw)
par1.axis["right"].label.set_fontsize(16)
par2.axis["right"].label.set_fontsize(16)
par3.axis["left"].label.set_fontsize(16)
host.axis["bottom"].label.set_fontsize(16)
host.axis["left"].label.set_fontsize(16)
plt.figtext(.5,.92,'Weather Data', fontsize=22, ha='center')
plt.draw()
plt.show()
fig.savefig("Test1.png")