对于解释不清的标题感到抱歉。我试图并行化我的代码的一部分,并陷入一个点产品。我正在寻找一种有效的方法来执行下面的代码,我确信有一个简单的线性代数解决方案,但我很困惑:
puy = np.arange(8).reshape(2,4)
puy2 = np.arange(12).reshape(3,4)
print puy, '\n'
print puy2.T
zz = np.zeros([4,2,3])
for i in range(4):
zz[i,:,:] = np.dot(np.array([puy[:,i]]).T,
np.array([puy2.T[i,:]]))
答案 0 :(得分:6)
一种方法是使用np.einsum
,它允许您指定您希望发生在索引上的内容:
>>> np.einsum('ik,jk->kij', puy, puy2)
array([[[ 0, 0, 0],
[ 0, 16, 32]],
[[ 1, 5, 9],
[ 5, 25, 45]],
[[ 4, 12, 20],
[12, 36, 60]],
[[ 9, 21, 33],
[21, 49, 77]]])
>>> np.allclose(np.einsum('ik,jk->kij', puy, puy2), zz)
True
答案 1 :(得分:3)
这是broadcasting
-
(puy[None,...]*puy2[:,None,:]).T