在Matlab中生成零和一的矩阵的更智能方法

时间:2016-02-09 11:47:11

标签: matlab optimization matrix nodes graph-theory

我想生成n节点的无向​​图的所有可能的邻接矩阵(零对角线)。

例如,对于n=3没有重新标记,我们得到2 3(3-1)/ 2 = 8个可能的网络配置(或邻接矩阵)。

适用于n = 3的一个解决方案(我认为非常愚蠢)将是以下内容:

n = 3;
A = [];
for k = 0:1
    for j = 0:1
        for i = 0:1
            m = [0 , i , j ; i , 0 , k ; j , k , 0 ];
            A = [A, m];
        end
    end
end

此外,我对以下内容似乎更快但我的索引有问题,因为缺少2个矩阵:

n = 3
C = [];
E = [];

A = zeros(n);

for i = 1:n
    for j = i+1:n
        A(i,j) = 1;
        A(j,i) = 1;
        C = [C,A];
    end
end

B = ones(n);
B = B- diag(diag(ones(n)));
for i = 1:n
    for j = i+1:n
        B(i,j) = 0;
        B(j,i) = 0;
        E = [E,B];
    end
end

D = [C,E]

有更快的方法吗?

1 个答案:

答案 0 :(得分:5)

我肯定会用二进制编码生成邻接矩阵的非对角元素:

n = 4;  %// number of nodes
m = n*(n-1)/2;
offdiags = dec2bin(0:2^m-1,m)-48; %//every 2^m-1 possible configurations

如果您拥有统计和机器学习工具箱,那么Example将为您轻松创建矩阵:

%// this is basically a for loop
tmpcell = arrayfun(@(k) squareform(offdiags(k,:)),1:size(offdiags,1),...
                 'uniformoutput',false);
A = cat(2,tmpcell{:}); %// concatenate the matrices in tmpcell

虽然我考虑沿着维度3进行连接,但您可以单独方便地查看每个矩阵。

或者,您可以自己以矢量化的方式进行数组合成,它可能更快(以更多内存为代价):

A = zeros(n,n,2^m);
%// lazy person's indexing scheme:
[ind_i,ind_j,ind_k] = meshgrid(1:n,1:n,1:2^m);
A(ind_i>ind_j) = offdiags.'; %'// watch out for the transpose

%// copy to upper diagonal:
A = A + permute(A,[2 1 3]);  %// n x n x 2^m matrix

%// reshape to n*[] matrix if you wish
A = reshape(A,n,[]);         %// n x (n*2^m) matrix