我正在制作一个带有threejs的3D项目,它允许用鼠标控制相机用于计算机设备,并且还允许通过智能手机的触摸事件和设备定向事件进行控制。 例如,this site的工作方式与我想要的方式相同。
当我使用OrbitControls在PC版本上移动相机时,我将touchstart / move / end事件绑定到mousedown / move / up并且它完美地运行。
问题是当我尝试添加设备方向事件的值时。这是我尝试在OrbitControls.js中添加的内容:
THREE.OrbitControls = function (object, domElement) {
const scope = this;
let lastBeta = 0;
let lastGamma = 0;
this.deviceOrientation = {};
function onDeviceOrientationChangeEvent(event) {
scope.deviceOrientation = event;
// Z
var alpha = scope.deviceOrientation.alpha
? THREE.Math.degToRad(scope.deviceOrientation.alpha)
: 0;
// X'
var beta = scope.deviceOrientation.beta
? THREE.Math.degToRad(scope.deviceOrientation.beta)
: 0;
// Y''
var gamma = scope.deviceOrientation.gamma
? THREE.Math.degToRad(scope.deviceOrientation.gamma)
: 0;
// O
var orient = scope.screenOrientation
? THREE.Math.degToRad(scope.screenOrientation)
: 0;
rotateLeft(lastGamma - gamma);
rotateUp(lastBeta - beta);
lastBeta = beta; //is working
lastGamma = gamma; //doesn't work properly
}
window.addEventListener('deviceorientation', onDeviceOrientationChangeEvent, false);
};
由于β的值在[-180,180]度范围内,垂直旋转不会遇到任何问题,而伽玛的范围是[-90,90],并且在定位设备时值也会突然变化# 39;屏幕上下(即使我认为它应该返回水平旋转)。 即使在转换伽玛范围以使其从-180到180的值时,突然的变化也会导致一切都出错。
我想我必须像在deviceOrientationControls.js中那样使用四元数,但我真的不知道它是如何工作的,我到目前为止所做的每一次尝试都是失败的。有人能帮帮我吗?
PS:这是the description on the deviceorientation event的链接,可以更好地理解真正的alpha beta和gamma。
修改
我添加了一个片段,以显示beta和gamma变化。
let deltaBeta = 0;
let deltaGamma = 0;
if (window.DeviceOrientationEvent) {
window.addEventListener('deviceorientation', function (e) {
const beta = (e.beta != null) ? Math.round(e.beta) : 0;
const gamma = (e.gamma != null) ? Math.round(e.gamma) : 0;
deltaBeta = Math.abs(beta - deltaBeta);
deltaGamma = Math.abs(gamma - deltaGamma);
$("#beta").html("Beta: " + beta);
$("#gamma").html("Gamma: " + gamma);
if (Math.abs(deltaBeta) > Math.abs(Number($("#deltaBeta").html()))) {
$("#deltaBeta").html(deltaBeta);
if (Number($("#deltaBeta").html()) >= 30) {
$("#deltaBeta").removeAttr("class", "blue").addClass("red");
}
}
if (Math.abs(deltaGamma) > Math.abs(Number($("#deltaGamma").html()))) {
$("#deltaGamma").html(deltaGamma);
if (Number($("#deltaGamma").html()) >= 30) {
$("#deltaGamma").removeAttr("class", "blue").addClass("red");
}
}
}, true);
} else {
$("#gamma").html("deviceorientation not supported");
}

.red {
color: red;
font-weight: bold;
}
.blue {
color: blue;
font-weight: bold;
}

<script src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js"></script>
<body>
<div>
<span id="beta"></span>
<span> [-180; 180]</span>
</div>
<div>
<span>DeltaMax</span>
<span id="deltaBeta" class="blue">0</span>
</div>
<div>
<span id="gamma"></span>
<span> [-90; 90]</span>
</div>
<div>
<span>DeltaMax</span>
<span id="deltaGamma" class="blue">0</span>
</div>
</body>
&#13;
答案 0 :(得分:9)
我找到了一个使用函数将四元数转换为弧度的解决方案,所以如果有人想使用OrbitControls进行点击/触摸+设备方向控制,我想分享它。
我取初始方向(x1,y1,z1)并计算新的方向(x2,y2,z3),它们之间的差异是相机完成的旋转变化。我将这些行添加到初始更新函数
this.update = function () {
// Z
const alpha = scope.deviceOrientation.alpha
? THREE.Math.degToRad(scope.deviceOrientation.alpha)
: 0;
// X'
const beta = scope.deviceOrientation.beta
? THREE.Math.degToRad(scope.deviceOrientation.beta)
: 0;
// Y''
const gamma = scope.deviceOrientation.gamma
? THREE.Math.degToRad(scope.deviceOrientation.gamma)
: 0;
// O
const orient = scope.screenOrientation
? THREE.Math.degToRad(scope.screenOrientation)
: 0;
const currentQ = new THREE.Quaternion().copy(scope.object.quaternion);
setObjectQuaternion(currentQ, alpha, beta, gamma, orient);
const currentAngle = Quat2Angle(currentQ.x, currentQ.y, currentQ.z, currentQ.w);
// currentAngle.z = left - right
this.rotateLeft((lastGamma - currentAngle.z) / 2);
lastGamma = currentAngle.z;
// currentAngle.y = up - down
this.rotateUp(lastBeta - currentAngle.y);
lastBeta = currentAngle.y;
}
function onDeviceOrientationChangeEvent(event) {
scope.deviceOrientation = event;
}
window.addEventListener('deviceorientation', onDeviceOrientationChangeEvent, false);
<小时/>
function onScreenOrientationChangeEvent(event) {
scope.screenOrientation = window.orientation || 0;
}
window.addEventListener('orientationchange', onScreenOrientationChangeEvent, false);
var setObjectQuaternion = function () {
const zee = new THREE.Vector3(0, 0, 1);
const euler = new THREE.Euler();
const q0 = new THREE.Quaternion();
const q1 = new THREE.Quaternion(-Math.sqrt(0.5), 0, 0, Math.sqrt(0.5));
return function (quaternion, alpha, beta, gamma, orient) {
// 'ZXY' for the device, but 'YXZ' for us
euler.set(beta, alpha, -gamma, 'YXZ');
// Orient the device
quaternion.setFromEuler(euler);
// camera looks out the back of the device, not the top
quaternion.multiply(q1);
// adjust for screen orientation
quaternion.multiply(q0.setFromAxisAngle(zee, -orient));
}
} ();
<小时/>
function Quat2Angle(x, y, z, w) {
let pitch, roll, yaw;
const test = x * y + z * w;
// singularity at north pole
if (test > 0.499) {
yaw = Math.atan2(x, w) * 2;
pitch = Math.PI / 2;
roll = 0;
return new THREE.Vector3(pitch, roll, yaw);
}
// singularity at south pole
if (test < -0.499) {
yaw = -2 * Math.atan2(x, w);
pitch = -Math.PI / 2;
roll = 0;
return new THREE.Vector3(pitch, roll, yaw);
}
const sqx = x * x;
const sqy = y * y;
const sqz = z * z;
yaw = Math.atan2((2 * y * w) - (2 * x * z), 1 - (2 * sqy) - (2 * sqz));
pitch = Math.asin(2 * test);
roll = Math.atan2((2 * x * w) - (2 * y * z), 1 - (2 * sqx) - (2 * sqz));
return new THREE.Vector3(pitch, roll, yaw);
}