我已经安装了回归树。我尝试使用save()函数保存拟合模型但是如果我关闭R,加载对象并调用它我会得到不同的输出。
以下是代码:
training.set=iris[,-5]
library(tree)
set.seed(123)
part1 = sample(1:nrow(training.set), round(nrow(training.set)/2))
part2 = setdiff(1:nrow(training.set), part1)
tree.output = tree("Sepal.Length~.", data=training.set[part1,],
control=tree.control(nobs=length(part1), minsize=2, mindev=0.001))
prune.t = prune.tree(tree.output, newdata=training.set[part2,])
plot(prune.t)
J = prune.t$size[prune.t$dev == min(prune.t$dev)]
J
m.tree = prune.tree(tree.output,best=J)
save(m.tree,file="my model.RData")
m.tree
输出:
node), split, n, deviance, yval
* denotes terminal node
1) root 75 49.54000 5.756
2) Petal.Length < 4.3 41 6.69800 5.161
4) Petal.Length < 3.55 31 3.82800 5.019
8) Sepal.Width < 3.45 17 1.04900 4.794
16) Petal.Length < 1.45 9 0.52220 4.644 *
17) Petal.Length > 1.45 8 0.09875 4.962 *
9) Sepal.Width > 3.45 14 0.86930 5.293
18) Sepal.Width < 3.85 8 0.17880 5.138 *
19) Sepal.Width > 3.85 6 0.24000 5.500 *
5) Petal.Length > 3.55 10 0.32000 5.600 *
3) Petal.Length > 4.3 34 10.83000 6.474
6) Petal.Length < 5.7 28 3.46400 6.264
12) Petal.Width < 2.05 23 2.42600 6.187 *
13) Petal.Width > 2.05 5 0.26800 6.620 *
7) Petal.Length > 5.7 6 0.41500 7.450
14) Petal.Length < 6.35 4 0.02750 7.275 *
15) Petal.Length > 6.35 2 0.02000 7.800 *
脚本的第二部分:
q()
rm(list=ls() )
load("my model.RData")
m.tree
输出:
$frame
var n dev yval splits.cutleft splits.cutright
1 Petal.Length 75 49.5448000 5.756000 <4.3 >4.3
2 Petal.Length 41 6.6975610 5.160976 <3.55 >3.55
4 Sepal.Width 31 3.8283871 5.019355 <3.45 >3.45
8 Petal.Length 17 1.0494118 4.794118 <1.45 >1.45
16 <leaf> 9 0.5222222 4.644444
17 <leaf> 8 0.0987500 4.962500
9 Sepal.Width 14 0.8692857 5.292857 <3.85 >3.85
18 <leaf> 8 0.1787500 5.137500
19 <leaf> 6 0.2400000 5.500000
5 <leaf> 10 0.3200000 5.600000
3 Petal.Length 34 10.8261765 6.473529 <5.7 >5.7
6 Petal.Width 28 3.4642857 6.264286 <2.05 >2.05
12 <leaf> 23 2.4260870 6.186957
13 <leaf> 5 0.2680000 6.620000
7 Petal.Length 6 0.4150000 7.450000 <6.35 >6.35
14 <leaf> 4 0.0275000 7.275000
15 <leaf> 2 0.0200000 7.800000
$where
44 118 61 130 138 7 77 128 79 65 134 64 94 142 14 122 33 6 150 126 116
8 17 6 16 13 5 13 13 13 10 13 13 6 14 5 13 9 9 13 16 14
90 82 127 83 89 68 74 36 18 147 108 143 146 3 55 87 25 135 26 16 46
10 10 13 10 10 10 13 5 8 13 16 13 14 5 13 13 6 13 6 9 5
45 40 17 15 113 48 28 114 5 132 137 12 54 20 97 71 131 35 60 9 34
8 6 9 9 14 5 8 13 8 17 14 6 10 8 10 13 16 6 10 5 9
24 93 39 69 124 66 112 148 50 56 1 37
6 10 5 13 13 13 13 13 5 13 8 8
$terms
Sepal.Length ~ Sepal.Width + Petal.Length + Petal.Width
attr(,"variables")
list(Sepal.Length, Sepal.Width, Petal.Length, Petal.Width)
attr(,"factors")
Sepal.Width Petal.Length Petal.Width
Sepal.Length 0 0 0
Sepal.Width 1 0 0
Petal.Length 0 1 0
Petal.Width 0 0 1
attr(,"term.labels")
[1] "Sepal.Width" "Petal.Length" "Petal.Width"
attr(,"order")
[1] 1 1 1
attr(,"intercept")
[1] 1
attr(,"response")
[1] 1
attr(,".Environment")
<environment: 0x00000000059480f0>
attr(,"predvars")
list(Sepal.Length, Sepal.Width, Petal.Length, Petal.Width)
attr(,"dataClasses")
Sepal.Length Sepal.Width Petal.Length Petal.Width
"numeric" "numeric" "numeric" "numeric"
$call
snip.tree(tree = tree.output, nodes = c(19L, 18L, 5L, 16L, 13L,
12L))
$y
44 118 61 130 138 7 77 128 79 65 134 64 94 142 14 122 33 6 150 126 116
5.0 7.7 5.0 7.2 6.4 4.6 6.8 6.1 6.0 5.6 6.3 6.1 5.0 6.9 4.3 5.6 5.2 5.4 5.9 7.2 6.4
90 82 127 83 89 68 74 36 18 147 108 143 146 3 55 87 25 135 26 16 46
5.5 5.5 6.2 5.8 5.6 5.8 6.1 5.0 5.1 6.3 7.3 5.8 6.7 4.7 6.5 6.7 4.8 6.1 5.0 5.7 4.8
45 40 17 15 113 48 28 114 5 132 137 12 54 20 97 71 131 35 60 9 34
5.1 5.1 5.4 5.8 6.8 4.6 5.2 5.7 5.0 7.9 6.3 4.8 5.5 5.1 5.7 5.9 7.4 4.9 5.2 4.4 5.5
24 93 39 69 124 66 112 148 50 56 1 37
5.1 5.8 4.4 6.2 6.3 6.7 6.4 6.5 5.0 5.7 5.1 5.5
$weights
[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[41] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
attr(,"class")
[1] "tree"
attr(,"xlevels")
attr(,"xlevels")$Sepal.Width
NULL
attr(,"xlevels")$Petal.Length
NULL
attr(,"xlevels")$Petal.Width
NULL
我是否需要使用其他功能来保存模型? 谢谢。
答案 0 :(得分:3)
您的对象已正确存储,但正在以不同方式打印。对象m.tree
是一个包含类tree
的列表:
R> class(m.tree)
[1] "tree"
当您打印对象时,它会查找函数print.tree
(对于通用print
函数)。加载tree
包后,此功能仅 。
library(tree)
load("my model.RData")
m.tree
会给你你想要的东西。
如果您有兴趣,请运行
getS3method("print", "tree")
查看打印方法。