我正在尝试从lon-lat数据集中绘制空间地图。按照https://stackoverflow.com/a/19339663/709777中的示例,我几乎可以得到所需的结果
这是使用的代码(大部分来自前面提到的问题)
library(rgdal)
library(ggplot)
# read province limits
CV = readOGR(dsn=".", layer="poligonos_provincia_etrs89")
CV.pr=subset(CV, CV$CODINE == "46" | CV$CODINE == "12" | CV$CODINE == "03" )
# convert object to data.frame
CV2 <- fortify(CV.pr)
# read spatial data
datos.uvi=read.csv("salida-mapa-036.dat",sep=",",header=T,na.strings="-99.9")
uvi.temp<-datos.uvi[,c("longitud","latitud","RGlobal")]
colnames(uvi.temp)<-c("long","lat","RGlobal")
# plot map
ggplot() +
geom_tile(data = uvi.temp, aes(x = long, y = lat, z = RGlobal, fill = RGlobal), alpha = 0.4) +
stat_contour(data = uvi.temp, aes(x = long, y = lat, z = RGlobal)) +
geom_path(data = CV2, aes(x = long, y = lat, group = group),color="black", size=0.6) +
ggtitle("Previsión UVI - CV") + xlab("Longitud") + ylab("Latitud") +
scale_fill_continuous(name = "UVI", low = "white", high = "red") +
theme_bw() +
coord_map()
关键是我不想要瓷砖地图而是平滑的渐变地图。运行代码时会出现此警告:
警告消息:
stat_contour()
:(列表)对象中的计算失败 不能被强制输入'double'
我认为这是因为数据框中的数据类型(带有lon,lat和data的三列)如下所示
dput(uvi.temp)
structure(list(long = c(-1.25, -1, -1.25, -1, -0.75, -0.5, -0.25,
0, 0.25, 0.5, 0.75, -1.25, -1.25, -1, -0.75, -0.5, -0.25, 0,
0.25, 0.5, 0.75, -1.25, -1, -0.75, -0.5, -0.25, 0, 0.25, 0.5,
0.75, -1.25, -1, -0.75, -0.5, -0.25, 0, 0.25, 0.5, 0.75, -1.25,
-1, -0.75, -0.5, -0.25, 0, 0.25, 0.5, 0.75, -1.25, -1, -0.75,
-0.5, -0.25, 0, 0.25, 0.5, 0.75, -1.25, -1, -0.75, -0.5, -0.25,
0, 0.25, 0.5, 0.75, -1.25, -1, -0.75, -0.5, -0.25, 0, 0.25, 0.5,
0.75, -1.25, -1, -0.75, -0.5, -0.25, 0, 0.25, 0.5, 0.75, -1.25,
-1, -0.75, -0.5, -0.25, 0, 0.25, 0.5, 0.75, -1.25, -1, -0.75,
-0.5, -0.25, 0, 0.25, 0.5, 0.75, -1.25, -1, -0.75, -0.5, -0.25,
0, 0.25, 0.5, 0.75, -1.25, -1, -0.75, -0.5, -0.25, 0, 0.25, 0.5,
0.75, -1.25, -1, -0.75, -0.5, -0.25, 0, 0.25, 0.5, 0.75, -1.25,
-1, -0.75, -0.5, -0.25, 0, 0.25, 0.5, 0.75, -1.25, -1, -0.75,
-0.5, -0.25, 0, 0.25, 0.5, 0.75, -1.25, -1, -0.75, -0.5, -0.25,
0, 0.25, 0.5, 0.75, -1.25, -1, -0.75, -0.5, -0.25, 0, 0.25, 0.5,
0.75, -1.25, -1, -0.75, -0.5, -0.25, 0, 0.25, 0.5, 0.75, -1.25,
-1, -0.75, -0.5, -0.25, 0, 0.25, 0.5, 0.75, -1.25, -1, -0.75,
-0.5, -0.25, 0, 0.25, 0.5, 0.75, -1.25, -1, -0.75, -0.5, -0.25,
0, 0.25, 0.5, 0.75, -1.25, -1, -0.75, -0.5, -0.25, 0, 0.25, 0.5,
0.75, -1.25, -1, -0.75, -0.5, -0.25, 0, 0.25, 0.5, 0.75, -1.25,
-1, -0.75, -0.5, -0.25, 0, 0.25, 0.5, 0.75, -1.25, -1, -0.75,
-0.5, -0.25, 0, 0.25, 0.5, 0.75, -1.25, -1, -0.75, -0.5, -0.25,
0, 0.25, 0.5, 0.75), lat = c(37.75, 37.75, 37.75, 37.75, 37.75,
37.75, 37.75, 37.75, 37.75, 37.75, 37.75, 38, 37.75, 37.75, 37.75,
37.75, 37.75, 37.75, 37.75, 37.75, 37.75, 38, 38, 38, 38, 38,
38, 38, 38, 38, 38.25, 38.25, 38.25, 38.25, 38.25, 38.25, 38.25,
38.25, 38.25, 38.5, 38.5, 38.5, 38.5, 38.5, 38.5, 38.5, 38.5,
38.5, 38.75, 38.75, 38.75, 38.75, 38.75, 38.75, 38.75, 38.75,
38.75, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39.25, 39.25, 39.25,
39.25, 39.25, 39.25, 39.25, 39.25, 39.25, 39.5, 39.5, 39.5, 39.5,
39.5, 39.5, 39.5, 39.5, 39.5, 39.75, 39.75, 39.75, 39.75, 39.75,
39.75, 39.75, 39.75, 39.75, 40, 40, 40, 40, 40, 40, 40, 40, 40,
40.25, 40.25, 40.25, 40.25, 40.25, 40.25, 40.25, 40.25, 40.25,
40.5, 40.5, 40.5, 40.5, 40.5, 40.5, 40.5, 40.5, 40.5, 40.75,
40.75, 40.75, 40.75, 40.75, 40.75, 40.75, 40.75, 40.75, 37.75,
37.75, 37.75, 37.75, 37.75, 37.75, 37.75, 37.75, 37.75, 38, 38,
38, 38, 38, 38, 38, 38, 38, 38.25, 38.25, 38.25, 38.25, 38.25,
38.25, 38.25, 38.25, 38.25, 38.5, 38.5, 38.5, 38.5, 38.5, 38.5,
38.5, 38.5, 38.5, 38.75, 38.75, 38.75, 38.75, 38.75, 38.75, 38.75,
38.75, 38.75, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39.25, 39.25,
39.25, 39.25, 39.25, 39.25, 39.25, 39.25, 39.25, 39.5, 39.5,
39.5, 39.5, 39.5, 39.5, 39.5, 39.5, 39.5, 39.75, 39.75, 39.75,
39.75, 39.75, 39.75, 39.75, 39.75, 39.75, 40, 40, 40, 40, 40,
40, 40, 40, 40, 40.25, 40.25, 40.25, 40.25, 40.25, 40.25, 40.25,
40.25, 40.25, 40.5, 40.5, 40.5, 40.5, 40.5, 40.5, 40.5, 40.5,
40.5, 40.75, 40.75, 40.75, 40.75, 40.75, 40.75, 40.75, 40.75,
40.75), RGlobal = c(469.4264, 467.3801, 469.4264, 467.3801, 522.7478,
443.958, 441.283, 509.0632, 435.3009, 432.4717, 566.5648, 527.1168,
469.4264, 467.3801, 522.7478, 443.958, 441.283, 509.0632, 435.3009,
432.4717, 566.5648, 527.1168, 459.3489, 457.781, 439.8998, 437.827,
435.4037, 433.0625, 430.2155, 564.3985, 592.4016, 455.9498, 455.622,
443.1096, 431.0866, 500.2498, 428.5327, 427.8865, 561.918, 626.1251,
456.2038, 458.2242, 459.7855, 431.4439, 492.9174, 425.223, 424.3311,
490.1372, 450.9101, 449.7869, 586.2458, 455.2244, 452.9787, 514.1946,
425.5438, 419.4045, 484.3133, 441.4613, 445.6218, 575.9768, 509.4317,
437.0949, 411.3335, 412.9341, 412.7781, 411.7847, 432.1784, 435.553,
566.9114, 563.8876, 414.4346, 404.6672, 405.9609, 405.5721, 470.3917,
426.5352, 427.227, 552.512, 584.1269, 399.0303, 398.1212, 398.3982,
398.6394, 462.0748, 413.0668, 417.8466, 481.0621, 420.5388, 407.8954,
518.209, 390.5623, 390.4963, 453.643, 405.8642, 405.2392, 464.2149,
413.4183, 409.0698, 525.5512, 447.1689, 383.9111, 384.0972, 400.2987,
403.8821, 405.2475, 405.1649, 402.3291, 519.2192, 517.2463, 379.0551,
379.1682, 393.9954, 396.8607, 454.2946, 394.8534, 386.8805, 498.197,
538.8216, 387.8813, 375.4716, 374.1738, 377.1193, 437.4277, 385.8378,
381.4342, 422.0693, 365.6135, 373.4164, 497.8519, 469.4264, 467.3801,
522.7478, 443.958, 441.283, 509.0632, 435.3009, 432.4717, 566.5648,
527.1168, 459.3489, 457.781, 439.8998, 437.827, 435.4037, 433.0625,
430.2155, 564.3985, 592.4016, 455.9498, 455.622, 443.1096, 431.0866,
500.2498, 428.5327, 427.8865, 561.918, 626.1251, 456.2038, 458.2242,
459.7855, 431.4439, 492.9174, 425.223, 424.3311, 490.1372, 450.9101,
449.7869, 586.2458, 455.2244, 452.9787, 514.1946, 425.5438, 419.4045,
484.3133, 441.4613, 445.6218, 575.9768, 509.4317, 437.0949, 411.3335,
412.9341, 412.7781, 411.7847, 432.1784, 435.553, 566.9114, 563.8876,
414.4346, 404.6672, 405.9609, 405.5721, 470.3917, 426.5352, 427.227,
552.512, 584.1269, 399.0303, 398.1212, 398.3982, 398.6394, 462.0748,
413.0668, 417.8466, 481.0621, 420.5388, 407.8954, 518.209, 390.5623,
390.4963, 453.643, 405.8642, 405.2392, 464.2149, 413.4183, 409.0698,
525.5512, 447.1689, 383.9111, 384.0972, 400.2987, 403.8821, 405.2475,
405.1649, 402.3291, 519.2192, 517.2463, 379.0551, 379.1682, 393.9954,
396.8607, 454.2946, 394.8534, 386.8805, 498.197, 538.8216, 387.8813,
375.4716, 374.1738, 377.1193, 437.4277, 385.8378, 381.4342, 422.0693,
365.6135, 373.4164, 497.8519)), .Names = c("long", "lat", "RGlobal"
), class = "data.frame", row.names = c(NA, -246L))
有什么想法吗?
提前致谢
答案 0 :(得分:1)
最后我找到了一个解决方案,不是一个完美的解决方案,而是一个足够好的解决方案我会继续寻找更好的插值方法。从https://gis.stackexchange.com/q/169184/9227中的问题我创建了这段代码
library(ggplot2)
library(gstat)
library(sp)
library(maptools)
library(rgdal)
# Reading three data frames
datos.uvi.1 <- read.csv(file = "./salida-mapa-012.dat",header = TRUE)
datos.uvi.2 <- read.csv(file = "./salida-mapa-036.dat",header = TRUE)
datos.uvi.3 <- read.csv(file = "./salida-mapa-060.dat",header = TRUE)
# Looking for RGlobal max
new.uvi <- data.frame(datos.uvi.1$RGlobal,datos.uvi.2$RGlobal,datos.uvi.3$RGlobal)
max=apply(new.uvi, 1, max, na.rm=FALSE)
datos.uvi=data.frame(datos.uvi.1$longitud,datos.uvi.1$latitud,max)
colnames(datos.uvi)<-c("longitud","latitud","RGlobal")
# Define x & y as longitude and latitude
datos.uvi$x <- datos.uvi$longitud
datos.uvi$y <- datos.uvi$latitud
coordinates(datos.uvi) = ~x + y
# Reading shapefiles for province limits (black and blue limits in the map)
provincias = readOGR(dsn=".", layer="poligonos_provincia_etrs89")
pr1=subset(provincias, provincias$CODINE == "46" | provincias$CODINE == "12" | provincias$CODINE == "03" )
pr2=subset(provincias, provincias$CODINE == "43" | provincias$CODINE == "16" | provincias$CODINE == "30" | provincias$CODINE == "02" | provincias$CODINE == "50" )
pr1 <- fortify(pr1)
pr2 <- fortify(pr2)
# Interpolation area
x.range <- as.numeric(c(-1.75, 1)) # min/max longitude
y.range <- as.numeric(c(37.5, 41)) # min/max latitude
# Create a gridded structure
grd <- expand.grid(x = seq(from = x.range[1], to = x.range[2], by = 0.1), y = seq(from = y.range[1], to = y.range[2], by = 0.1))
coordinates(grd) <- ~x + y
gridded(grd) <- TRUE
#Interpolate surface and fix the output. Apply idw model for the data
idw <- idw(formula = RGlobal ~ 1, locations = datos.uvi, newdata = grd)
idw.output = as.data.frame(idw)
names(idw.output)[1:3] <- c("long", "lat", "RGlobalmax")
# Plot
ggplot() + geom_tile(data = idw.output, alpha = 0.8, aes(x = long, y = lat, fill = RGlobalmax)) +
scale_fill_gradient(low = "cyan", high = "orange",name = "UVI") +
geom_path(data = pr2, aes(long, lat, group = group), colour = "blue") +
geom_path(data = pr1, aes(long, lat, group = group), colour = "black") +
coord_map(xlim = c(-1.7, 1),ylim = c(37.6,40.9)) +
ggtitle("Previsión UVI - DD/MM/YYYY") + xlab(" ") + ylab(" ")