如果特定的x和y位置有多个数据,geom_tile()
如何组合数据?
示例:
library(ggplot2)
library(dplyr)
mtcars %>%
ggplot(aes(x=vs,y=am,fill=mpg)) +
geom_tile()
这不是意思:
library(ggplot2)
library(dplyr)
mtcars %>%
group_by(vs,am) %>%
summarize(mpg = mean(mpg)) %>%
ggplot(aes(x=vs,y=am,fill=mpg)) +
geom_tile()
答案 0 :(得分:0)
你可以看看:
library(ggplot2)
library(dplyr)
mtcars %>%
ggplot(aes(x=vs, y=am, fill=mpg)) +
geom_tile() -> gg
ggplot_build(gg) -> gb
gb$data[[1]]
## fill x y PANEL group xmin xmax ymin ymax colour size linetype alpha
## 1 #30648F 0 1 1 -1 -0.5 0.5 0.5 1.5 NA 0.1 1 NA
## 2 #30648F 0 1 1 -1 -0.5 0.5 0.5 1.5 NA 0.1 1 NA
## 3 #356E9D 1 1 1 -1 0.5 1.5 0.5 1.5 NA 0.1 1 NA
## 4 #316692 1 0 1 -1 0.5 1.5 -0.5 0.5 NA 0.1 1 NA
## 5 #29577E 0 0 1 -1 -0.5 0.5 -0.5 0.5 NA 0.1 1 NA
## 6 #275379 1 0 1 -1 0.5 1.5 -0.5 0.5 NA 0.1 1 NA
## 7 #1D3F5E 0 0 1 -1 -0.5 0.5 -0.5 0.5 NA 0.1 1 NA
## 8 #3977A9 1 0 1 -1 0.5 1.5 -0.5 0.5 NA 0.1 1 NA
## 9 #356E9D 1 0 1 -1 0.5 1.5 -0.5 0.5 NA 0.1 1 NA
## 10 #2A5982 1 0 1 -1 0.5 1.5 -0.5 0.5 NA 0.1 1 NA
## 11 #275277 1 0 1 -1 0.5 1.5 -0.5 0.5 NA 0.1 1 NA
## 12 #234A6D 0 0 1 -1 -0.5 0.5 -0.5 0.5 NA 0.1 1 NA
## 13 #254F73 0 0 1 -1 -0.5 0.5 -0.5 0.5 NA 0.1 1 NA
## 14 #1F4464 0 0 1 -1 -0.5 0.5 -0.5 0.5 NA 0.1 1 NA
## 15 #132B43 0 0 1 -1 -0.5 0.5 -0.5 0.5 NA 0.1 1 NA
## 16 #132B43 0 0 1 -1 -0.5 0.5 -0.5 0.5 NA 0.1 1 NA
## 17 #1E4161 0 0 1 -1 -0.5 0.5 -0.5 0.5 NA 0.1 1 NA
## 18 #51A8EA 1 1 1 -1 0.5 1.5 0.5 1.5 NA 0.1 1 NA
## 19 #4B9BDA 1 1 1 -1 0.5 1.5 0.5 1.5 NA 0.1 1 NA
## 20 #56B1F7 1 1 1 -1 0.5 1.5 0.5 1.5 NA 0.1 1 NA
## 21 #316693 1 0 1 -1 0.5 1.5 -0.5 0.5 NA 0.1 1 NA
## 22 #204566 0 0 1 -1 -0.5 0.5 -0.5 0.5 NA 0.1 1 NA
## 23 #1F4464 0 0 1 -1 -0.5 0.5 -0.5 0.5 NA 0.1 1 NA
## 24 #1A3A57 0 0 1 -1 -0.5 0.5 -0.5 0.5 NA 0.1 1 NA
## 25 #2A5982 0 0 1 -1 -0.5 0.5 -0.5 0.5 NA 0.1 1 NA
## 26 #4288C1 1 1 1 -1 0.5 1.5 0.5 1.5 NA 0.1 1 NA
## 27 #3E81B6 0 1 1 -1 -0.5 0.5 0.5 1.5 NA 0.1 1 NA
## 28 #4B9BDA 1 1 1 -1 0.5 1.5 0.5 1.5 NA 0.1 1 NA
## 29 #214769 0 1 1 -1 -0.5 0.5 0.5 1.5 NA 0.1 1 NA
## 30 #2C5C85 0 1 1 -1 -0.5 0.5 0.5 1.5 NA 0.1 1 NA
## 31 #1F4363 0 1 1 -1 -0.5 0.5 0.5 1.5 NA 0.1 1 NA
## 32 #316692 1 1 1 -1 0.5 1.5 0.5 1.5 NA 0.1 1 NA
和
mtcars %>%
group_by(vs,am) %>%
summarize(mpg = mean(mpg)) %>%
ggplot(aes(x=vs,y=am,fill=mpg)) +
geom_tile() -> gg
ggplot_build(gg) -> gb
gb$data[[1]]
## fill x y PANEL group xmin xmax ymin ymax colour size linetype alpha
## 1 #132B43 0 0 1 -1 -0.5 0.5 -0.5 0.5 NA 0.1 1 NA
## 2 #29577E 0 1 1 -1 -0.5 0.5 0.5 1.5 NA 0.1 1 NA
## 3 #2E608B 1 0 1 -1 0.5 1.5 -0.5 0.5 NA 0.1 1 NA
## 4 #56B1F7 1 1 1 -1 0.5 1.5 0.5 1.5 NA 0.1 1 NA