Clojure:Group-by太慢(1300万行文件)

时间:2016-02-01 10:11:13

标签: clojure group-by incanter

场合

我有一个1300万行CSV,我想为每个组执行逻辑回归(incanter)。 我的文件是这样的(值只是样本)

ID Max Probability
1  1   0.5 
1  5   0.6
1  10  0.99
2  1   0.1
2  7   0.95

所以我先用csv阅读器阅读,看上去很好。

我有类似的东西:

( {"Id" "1", "Max" 1, "Probability" 0.5} {"Id" "1", "Max" 5, "Probability" 0.6} etc.

我想通过Id对这些值进行分组,如果我没记错的话,那里有大约1.2百万的ID。 (我用Python做了大熊猫,它超级快)

这是我阅读和格式化文件的功能(它适用于较小的数据集):

  (defn read-file
  []
    (let [path (:path-file @config)
          content-csv (take-csv path \,)]
      (->> (group-by :Id content-csv)
           (map (fn [[k v]]
                [k {:x (mapv :Max v) :y (mapv :Probability v)}]))
           (into {}))))

我希望最终有类似的东西来执行逻辑回归(我很灵活,不需要矢量:x和:y,seqs都可以)

{"1" {:x [1 5 10] :y [0.5 0.6 0.99]} "2" {:x [1 7] :y [0.1 0.95]} etc.

问题

我在分组操作方面遇到了麻烦。我在CSV的输出上分别尝试了它,并且由于Java堆空间内存而没有消失,这将永远消失。 我认为问题是我的mapv事情,但这是分组。

我考虑过使用reduce或reduce-kv,但我不知道如何将这些函数用于此类目的。

我不关心“:x”和“:y”的顺序(一旦它们在它们之间相同,我的意思是x和y具有相同的索引......不是问题,因为它们是在同一条线上)和最终结果的Ids我读了那个组 - 保持顺序。 也许这对于手术而言代价高昂?

如果遇到任何人,我会给你样本数据:

(def sample '({"Id" "1" "Max" 1 "Probability" 0.5} {"Id" "1" "Max" 5 "Probability" 0.6} {"Id" "1" "Max" 10 "Probability" 0.99} {"Id" "2" "Max" 1 "Probability" 0.1} {"Id" "2" "Max" 7 "Probability" 0.95}))

其他替代方案

我有其他想法,但我不确定他们是“Clojure” - 友好。

  • 在Python中,由于函数的性质,并且因为文件已经被排序,而不是使用group-by,我在每个组的数据帧开始和结束索引中写入,所以我只需要选择直接使用sub-datatab。

  • 我还可以加载一个id列表,而不是从Clojure计算它。 喜欢

    (def ids'(“1”“2”等。

所以也许可以从:

开始
{"1" {:x [] :y []} "2" {:x [] :y []} etc.

从上一个seq开始,然后匹配每个ID上的大文件。

我不知道它实际上是否更有效率。

我拥有逻辑回归的所有其他功能,我只是缺少这部分! 谢谢!

修改

感谢您的回答,我终于有了这个解决方案。

在我的project.clj文件中

 :jvm-opts ["-Xmx13g"])

代码:

(defn data-group->map [group]
  {(:Id (first group))
   {:x (map :Max group)
    :y (map :Probability group)}})


(defn prob-cumsum [data]
  (cag/fmap
    (fn [x]
      (assoc x :y (reductions + (x :y))))
  data))


(defn process-data-splitter [data]
  (->> (partition-by :Id data)
       (map data-group->map)
       (into {})
       (prob-cumsum)))

我把所有代码都包装好了。拆分大约需要5分钟,但我不需要超速。对于文件读取,内存使用量可以达到所有内存,对于sigmoid则可以更少。

1 个答案:

答案 0 :(得分:6)

如果您的文件按ID排序,则可以使用partition-by代替group-by

然后您的代码将如下所示:

(defn data-group->map [group]
  [(:Id (first group))
   {:x (mapv :Max group)
    :y (mapv :Probability group)}])

(defn read-file []
  (let [path (:path-file @config)
        content-csv (take-csv path \,)]
    (->> content-csv
         (partition-by :Id)
         (map data-group->map)
         (into {}))))

应该加快速度。 然后你可以使用传感器加快速度

(defn read-file []
  (let [path (:path-file @config)
        content-csv (take-csv path \,)]
    (into {} (comp (partition-by :Id)
                   (map data-group->map))
          content-csv)))

让我们做一些测试:

首先生成像你这样的大数据:

(def huge-data
  (doall (mapcat #(repeat 
                     1000000
                     {:Id % :Max 1 :Probability 10})
           (range 10))))

我们有一千万个项目数据集,其中包含数百万个{:Id 0 :Max 1 :Probability 10},百万个{:Id 1 :Max 1 :Probability 10}等等。

现在要测试的功能:

(defn process-data-group-by [data]
  (->> (group-by :Id data)
       (map (fn [[k v]]
              [k {:x (mapv :Max v) :y (mapv :Probability v)}]))
       (into {})))

(defn process-data-partition-by [data]
  (->> data
       (partition-by :Id)
       (map data-group->map)
       (into {})))

(defn process-data-transducer [data]
  (into {} (comp (partition-by :Id) (map data-group->map)) data))

现在进行时间测试:

(do (time (dorun (process-data-group-by huge-data)))
    (time (dorun (process-data-partition-by huge-data)))
    (time (dorun (process-data-transducer huge-data))))

"Elapsed time: 3377.167645 msecs"
"Elapsed time: 3707.03448 msecs"
"Elapsed time: 1462.955152 msecs"

请注意,partition-by生成延迟序列,而group-by应实现整个集合。因此,如果您需要按组分组而不是整个地图,则可以删除(into {})并更快地访问每个数据:

(defn process-data-partition-by [data]
  (->> data
       (partition-by :Id)
       (map data-group->map)))

检查:

user> (time (def processed-data (process-data-partition-by huge-data)))
"Elapsed time: 0.06079 msecs"
#'user/processed-data
user> (time (let [f (first processed-data)]))
"Elapsed time: 302.200571 msecs"
nil
user> (time (let [f (second processed-data)]))
"Elapsed time: 500.597153 msecs"
nil
user> (time (let [f (last processed-data)]))
"Elapsed time: 2924.588625 msecs"
nil
user.core> (time (let [f (last processed-data)]))
"Elapsed time: 0.037646 msecs"
nil