我正在尝试使用TensorFlow生成摘要并使用TensorBoard将其可视化。但是,我收到了一个我不理解的错误(InvalidArgumentError: You must feed a value for placeholder tensor 'Placeholder_1' with dtype float
)。
这是我的计划的完整来源:
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
import tensorflow as tf
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
y = tf.nn.softmax(tf.matmul(x, W) + b)
_ = tf.histogram_summary("weights", W)
_ = tf.histogram_summary("biases", b)
_ = tf.histogram_summary("y", y)
y_ = tf.placeholder(tf.float32, [None, 10])
with tf.name_scope("xent") as scope:
cross_entropy = -tf.reduce_sum(y_*tf.log(y))
_ = tf.scalar_summary("cross entropy", cross_entropy)
with tf.name_scope("train") as scope:
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)
with tf.name_scope("test") as scope:
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
_ = tf.scalar_summary("accuracy", accuracy)
merged = tf.merge_all_summaries()
writer = tf.train.SummaryWriter("/tmp/mnist_nn", sess.graph_def)
for i in range(1000):
if (i % 10) == 0:
feed = {x: mnist.test.images, y_: mnist.test.labels}
result = sess.run([merged, accuracy], feed_dict=feed)
summary_str = result[0]
acc = result[1]
print("Accuracy at step %s: %s" % (i, acc))
else:
batch_xs, batch_ys = mnist.train.next_batch(100)
feed = {x: batch_xs, y_: batch_ys}
sess.run(train_step, feed_dict=feed)
print(accuracy.eval({x: mnist.test.images, y_: mnist.test.labels}))
但是,当我尝试运行上面的代码时,会引发以下错误:
---------------------------------------------------------------------------
InvalidArgumentError Traceback (most recent call last)
<ipython-input-23-584a7bc91816> in <module>()
39 if (i % 10) == 0:
40 feed = {x: mnist.test.images, y_: mnist.test.labels}
---> 41 result = sess.run([merged, accuracy], feed_dict=feed)
42 summary_str = result[0]
43 acc = result[1]
/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/tensorflow/python/client/session.pyc in run(self, fetches, feed_dict)
366
367 # Run request and get response.
--> 368 results = self._do_run(target_list, unique_fetch_targets, feed_dict_string)
369
370 # User may have fetched the same tensor multiple times, but we
/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/tensorflow/python/client/session.pyc in _do_run(self, target_list, fetch_list, feed_dict)
442 # pylint: disable=protected-access
443 raise errors._make_specific_exception(node_def, op, error_message,
--> 444 e.code)
445 # pylint: enable=protected-access
446 six.reraise(e_type, e_value, e_traceback)
InvalidArgumentError: You must feed a value for placeholder tensor 'Placeholder_1' with dtype float
[[Node: Placeholder_1 = Placeholder[dtype=DT_FLOAT, shape=[], _device="/job:localhost/replica:0/task:0/cpu:0"]()]]
Caused by op u'Placeholder_1', defined at:
从错误中可以看出,我的源中的占位符没有被提供适当的值。据我所知,我正在为所有占位符(x
和y_
)提供价值。
如果您需要,我会在此问题中添加完整日志。
我还发现,当我第一次获取mnist时,它确实有效(使用以下输出),但仍然没有生成TensorBoard可视化:
Successfully downloaded train-images-idx3-ubyte.gz 9912422 bytes.
Extracting MNIST_data/train-images-idx3-ubyte.gz
Successfully downloaded train-labels-idx1-ubyte.gz 28881 bytes.
Extracting MNIST_data/train-labels-idx1-ubyte.gz
Successfully downloaded t10k-images-idx3-ubyte.gz 1648877 bytes.
Extracting MNIST_data/t10k-images-idx3-ubyte.gz
Successfully downloaded t10k-labels-idx1-ubyte.gz 4542 bytes.
Extracting MNIST_data/t10k-labels-idx1-ubyte.gz
Tensor("MergeSummary/MergeSummary:0", shape=TensorShape([]), dtype=string)
merged
Accuracy at step 0: 0.098
Accuracy at step 10: 0.7404
Accuracy at step 20: 0.8041
Accuracy at step 30: 0.814 ...
答案 0 :(得分:13)
从您的错误消息中,看起来您正在使用IPython。使用IPython构建TensorFlow模型时的一个缺陷是像tf.merge_all_summaries()
这样的函数会记住在当前会话中创建的每个摘要,包括因错误而失败的单元格。这是TensorFlow使用默认图收集流程中创建的所有操作,摘要等的结果,除非您明确指定图形。我怀疑您对tf.merge_all_summaries()
的调用返回的次数超过了您在代码中创建的三个直方图摘要,而较旧的那些将依赖于以前创建的占位符。
有两种主要方法可以解决这个问题。最简单的是明确合并摘要,而不是使用tf.merge_all_summaries()
:
weights_summary = tf.histogram_summary("weights", W)
biases_summary = tf.histogram_summary("biases", b)
y_summary = tf.histogram_summary("y", y)
merged = tf.merge_summary([weights_summary, biases_summary, y_summary])
另一种方法是在构建模型之前设置显式默认图。如果你想在多个IPython单元格中拆分你的模型,这很麻烦,但也应该有效:
# Sets a new default graph, and stores it in `g`.
with tf.Graph().as_default() as g:
x = tf.placeholder(tf.float32, [None, 784])
# ...
# Summaries are added to `g`.
_ = tf.histogram_summary("weights", W)
_ = tf.histogram_summary("biases", b)
_ = tf.histogram_summary("y", y)
# ...
# `merged` contains only summaries from `g`.
merged = tf.merge_all_summaries()
# ...
答案 1 :(得分:6)
使用TensorBoard回调并从头开始拟合 new 模型时,可能会遇到此错误。在这种情况下,解决方案是调用
from keras import backend as K
K.clear_session()
在创建新模型之前。用keras 2.1.5和tensorflow 1.6.0进行验证