拆分自相交多边形仅在Python

时间:2016-01-31 05:23:16

标签: python shapely

我在Windows 7 64位中使用Python 3.5 64位,版本1.5.13。

我有以下代码返回一个自相交的多边形:

import numpy as np
from shapely.geometry import Polygon, MultiPolygon
import matplotlib.pyplot as plt

x = np.array([ 0.38517325,  0.40859912,  0.43296919,  0.4583215 ,  0.4583215 ,
               0.43296919,  0.40859912,  0.38517325,  0.36265506,  0.34100929])
y = np.array([ 62.5       ,  56.17977528,  39.39698492,   0.        ,
               0.        ,  17.34605377,  39.13341671,  60.4180932 ,
               76.02574417,  85.47008547])
polygon = Polygon(np.c_[x, y])
plt.plot(*polygon.exterior.xy)

Self-intersecting polygon

这是对的。然后我尝试使用buffer(0)

获取两个单独的多边形
split_polygon = polygon.buffer(0)
plt.plot(*polygon.exterior.xy)
print(type(split_polygon))
plt.fill(*split_polygon.exterior.xy)

不幸的是,它只返回了两个多边形:

Only returned one polygon

有人可以帮忙吗?谢谢!

2 个答案:

答案 0 :(得分:11)

第一步是关闭LineString来制作一个LinearRing,这就是Polygons的组成部分。

from shapely.geometry import LineString, MultiPolygon
from shapely.ops import polygonize, unary_union

# original data
ls = LineString(np.c_[x, y])
# closed, non-simple
lr = LineString(ls.coords[:] + ls.coords[0:1])
lr.is_simple  # False

然而,请注意它不简单,因为线条交叉以形成蝴蝶结。 (根据我的经验,广泛使用的缓冲区(0)技巧通常不能用于修复蝴蝶结)。这不适用于LinearRing,因此需要进一步的工作。使用unary_union

简化MultiLineString
mls = unary_union(lr)
mls.geom_type  # MultiLineString'

然后使用polygonize从线条中找到多边形:

for polygon in polygonize(mls):
    print(polygon)

或者如果您想要一个MultiPolygon几何体:

mp = MultiPolygon(list(polygonize(mls)))

答案 1 :(得分:2)

在2020年,我为此苦苦挣扎了一段时间,最后才写了一种清理自交路口的方法。

这需要Shapely 1.2.1版的explain_validity()方法起作用。

def clean_bowtie_geom(base_linearring):
    base_polygon = Polygon(base_linearring)

    invalidity = explain_validity(base_polygon)
    invalid_regex = re.compile('^(Self-intersection)[[](.+)\s(.+)[]]$')
    match = invalid_regex.match(invalidity)
    if match:
        groups = match.groups()
        intersect_point = (float(groups[1]), float(groups[2]))
        new_linring_coords1 = []
        new_linring_coords2 = []
        pop_new_linring = False

        for i in range(0, len(base_linearring.coords)):
            if i == len(base_linearring.coords) - 1:
                end_point = base_linearring.coords[0]
            else:
                end_point = base_linearring.coords[i + 1]
            start_point = base_linearring.coords[i]

            if not pop_new_linring:
                if is_point_on_line_and_between(start=start_point, end=end_point, pt=intersect_point):
                    new_linring_coords2.append(intersect_point)
                    new_linring_coords1.append(intersect_point)
                    pop_new_linring = True
                else:
                    new_linring_coords1.append(start_point)

            else:
                new_linring_coords2.append(start_point)
                if is_point_on_line_and_between(start=start_point, end=end_point, pt=intersect_point):
                    new_linring_coords2.append(intersect_point)
                    pop_new_linring = False

        corrected_linear_ring1 = LinearRing(coordinates=new_linring_coords1)
        corrected_linear_ring2 = LinearRing(coordinates=new_linring_coords2)

        polygon1 = Polygon(corrected_linear_ring1)
        polygon2 = Polygon(corrected_linear_ring2)
        
def is_point_on_line_and_between(start, end, pt, tol=0.0005):
    """
    Checks to see if pt is directly in line and between start and end coords
    :param start: list or tuple of x, y coordinates of start point of line
    :param end: list or tuple of x, y coordinates of end point of line
    :param pt: list or tuple of x, y coordinates of point to check if it is on the line
    :param tol: Tolerance for checking if point on line
    :return: True if on the line, False if not on the line
    """
    v1 = (end[0] - start[0], end[1] - start[1])
    v2 = (pt[0] - start[0], pt[1] - start[1])
    cross = cross_product(v1, v2)
    if cross <= tol:
        # The point lays on the line, but need to check if in between
        if ((start[0] <= pt[0] <= end[0]) or (start[0] >= pt[0] >= end[0])) and ((start[1] <= pt[1] <= end[1]) or (start[1] >= pt[1] >= end[1])):
            return True
    return False

这不是最干净的代码,但可以帮我完成工作。

输入是具有自相交几何形状的LinearRing(is_simple = False),输出可以是2个LinearRings或两个多边形,无论您选择哪个(或者有条件选择一个或另一个,世界都是您的牡蛎)