我正在尝试运行以下代码,该代码是从here复制的。我用较旧的内核版本进行了一些更改。
当我插入内核模块时,nlmsg_multicast()
失败并在nlmsg_multicast() error: -3
中记录为/var/log/messages
。
在运行用户空间程序时,socket()
失败。
我到底想做的是,
因为,可能会发生用户空间中没有可用于回复事件的进程,即使在那种情况下模块必须发送事件并等待一段时间进行响应。
是否可以将第一条消息从内核模块发送到用户空间中的进程?我怎么能这样做?
内核模块代码:
生成文件
obj-m := foo.o
KDIR := /lib/modules/$(shell uname -r)/build
PWD := $(shell pwd)
default:
$(MAKE) -C $(KDIR) SUBDIRS=$(PWD) modules
clean:
$(MAKE) -C $(KDIR) SUBDIRS=$(PWD) clean
foo.c的
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/netlink.h>
#include <net/netlink.h>
#include <net/net_namespace.h>
/* Protocol family, consistent in both kernel prog and user prog. */
#define MYPROTO NETLINK_USERSOCK
/* Multicast group, consistent in both kernel prog and user prog. */
#define MYGRP 21
static struct sock *nl_sk = NULL;
static void send_to_user(void)
{
struct sk_buff *skb;
struct nlmsghdr *nlh;
char *msg = "Hello from kernel";
int msg_size = strlen(msg) + 1;
int res;
pr_info("Creating skb.\n");
skb = nlmsg_new(NLMSG_ALIGN(msg_size + 1), GFP_KERNEL);
if (!skb) {
pr_err("Allocation failure.\n");
return;
}
nlh = nlmsg_put(skb, 0, 1, NLMSG_DONE, msg_size + 1, 0);
strcpy(nlmsg_data(nlh), msg);
pr_info("Sending skb.\n");
res = nlmsg_multicast(nl_sk, skb, 0, MYGRP, GFP_KERNEL);
if (res < 0)
pr_info("nlmsg_multicast() error: %d\n", res);
else
pr_info("Success.\n");
}
static int __init hello_init(void)
{
pr_info("Inserting hello module.\n");
//nl_sk = netlink_kernel_create(&init_net, MYPROTO, NULL);
nl_sk = netlink_kernel_create(&init_net, MYPROTO, 0, NULL, NULL, THIS_MODULE);
if (!nl_sk) {
pr_err("Error creating socket.\n");
return -10;
}
send_to_user();
netlink_kernel_release(nl_sk);
return 0;
}
static void __exit hello_exit(void)
{
pr_info("Exiting hello module.\n");
}
module_init(hello_init);
module_exit(hello_exit);
MODULE_LICENSE("GPL");
用户空间计划:
(用gcc somename.c
编译)
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sys/socket.h>
#include <linux/netlink.h>
#include <unistd.h>
/* Protocol family, consistent in both kernel prog and user prog. */
#define MYPROTO NETLINK_USERSOCK
/* Multicast group, consistent in both kernel prog and user prog. */
#define MYMGRP 21
int open_netlink(void)
{
int sock;
struct sockaddr_nl addr;
int group = MYMGRP;
sock = socket(AF_NETLINK, SOCK_RAW, MYPROTO);
if (sock < 0) {
printf("sock < 0.\n");
return sock;
}
memset((void *) &addr, 0, sizeof(addr));
addr.nl_family = AF_NETLINK;
addr.nl_pid = getpid();
/* This doesn't work for some reason. See the setsockopt() below. */
addr.nl_groups = MYMGRP;
if (bind(sock, (struct sockaddr *) &addr, sizeof(addr)) < 0) {
printf("bind < 0.\n");
return -1;
}
/*
* 270 is SOL_NETLINK. See
* http://lxr.free-electrons.com/source/include/linux/socket.h?v=4.1#L314
* and
* https://stackoverflow.com/questions/17732044/
*/
/*if (setsockopt(sock, 270, NETLINK_ADD_MEMBERSHIP, &group, sizeof(group)) < 0) {
printf("setsockopt < 0\n");
return -1;
}*/
return sock;
}
void read_event(int sock)
{
struct sockaddr_nl nladdr;
struct msghdr msg;
struct iovec iov;
char buffer[65536];
int ret;
iov.iov_base = (void *) buffer;
iov.iov_len = sizeof(buffer);
msg.msg_name = (void *) &(nladdr);
msg.msg_namelen = sizeof(nladdr);
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
printf("Ok, listening.\n");
ret = recvmsg(sock, &msg, 0);
if (ret < 0)
printf("ret < 0.\n");
else
printf("Received message payload: %s\n", NLMSG_DATA((struct nlmsghdr *) &buffer));
}
int main(int argc, char *argv[])
{
int nls;
nls = open_netlink();
if (nls < 0)
return nls;
while (1)
read_event(nls);
return 0;
}
感谢您的时间!
答案 0 :(得分:4)
这看起来很糟糕(因为上层应该依赖于较低层,而不是相反)。但是如果您确信内核不能闲置或使用默认配置操作,直到用户空间可以获取信息,那么首先安装this tool(也可能想要阅读core guide),然后执行类似这样的操作:
内核:
#include <linux/module.h>
#include <linux/kernel.h>
#include <net/netlink.h>
#include <net/net_namespace.h>
#define MYPROTO NETLINK_USERSOCK
#define MYGRP 22
static struct sock *nl_sk;
static struct timer_list timer;
void try_send(unsigned long data)
{
struct sk_buff *skb;
struct nlmsghdr *nlh;
char *msg = "Hello from kernel";
int msg_size = strlen(msg) + 1;
int res;
skb = nlmsg_new(NLMSG_ALIGN(msg_size + 1), GFP_ATOMIC);
if (!skb) {
pr_err("Allocation failure.\n");
return;
}
nlh = nlmsg_put(skb, 0, 1, NLMSG_DONE, msg_size + 1, 0);
strcpy(nlmsg_data(nlh), msg);
pr_info("Sending multicast.\n");
res = nlmsg_multicast(nl_sk, skb, 0, MYGRP, GFP_ATOMIC);
if (res < 0) {
pr_info("nlmsg_multicast() error: %d. Will try again later.\n", res);
/* Wait 1 second. */
mod_timer(&timer, jiffies + msecs_to_jiffies(1000));
} else {
pr_info("Success.\n");
}
}
static int handle_netlink_message(struct sk_buff *skb_in, struct nlmsghdr *nl_hdr)
{
char *hello;
hello = NLMSG_DATA(nl_hdr);
pr_info("Userspace says '%s.'\n", hello);
return 0;
}
static void receive_answer(struct sk_buff *skb)
{
netlink_rcv_skb(skb, &handle_netlink_message);
}
static int __init hello_init(void)
{
pr_info("Inserting module.\n");
nl_sk = netlink_kernel_create(&init_net, MYPROTO, 0, receive_answer, NULL, THIS_MODULE);
if (!nl_sk) {
pr_err("Error creating socket.\n");
return -10;
}
init_timer(&timer);
timer.function = try_send;
timer.expires = jiffies + 1000;
timer.data = 0;
add_timer(&timer);
return 0;
}
static void __exit hello_exit(void)
{
del_timer_sync(&timer);
netlink_kernel_release(nl_sk);
pr_info("Exiting module.\n");
}
module_init(hello_init);
module_exit(hello_exit);
MODULE_LICENSE("GPL");
用户(我正在使用gcc usr.c -I/usr/include/libnl3 -lnl-3 -Wall
进行编译,您的里程可能会有所不同):
#include <netlink/netlink.h>
#include <netlink/msg.h>
#define MYPROTO NETLINK_USERSOCK
#define MYMGRP 22
struct nl_sock *sk;
void respond_to_kernel(void)
{
char *response = "foo bar";
int error;
error = nl_send_simple(sk, 12345, NLMSG_DONE, response, strlen(response) + 1);
if (error < 0) {
printf("nl_send_simple() threw errcode %d.\n", error);
printf("libnl's message: %s", nl_geterror(error));
} else {
printf("Responded %d bytes.\n", error);
}
}
int receive_kernel_request(struct nl_msg *msg, void *arg)
{
char *hello;
hello = nlmsg_data(nlmsg_hdr(msg));
printf("Kernel says '%s'.\n", hello);
respond_to_kernel();
return 0;
}
int prepare_socket(void)
{
int error;
sk = nl_socket_alloc();
if (!sk) {
printf("nl_socket_alloc() returned NULL.\n");
return -1;
}
nl_socket_disable_seq_check(sk);
error = nl_socket_modify_cb(sk, NL_CB_FINISH, NL_CB_CUSTOM, receive_kernel_request, NULL);
if (error < 0) {
printf("Could not register callback function. Errcode: %d\n", error);
goto fail;
}
error = nl_connect(sk, MYPROTO);
if (error < 0) {
printf("Connection failed: %d\n", error);
goto fail;
}
error = nl_socket_add_memberships(sk, MYMGRP, 0);
if (error) {
printf("Could not register to the multicast group. %d\n", error);
goto fail;
}
return 0;
fail:
printf("libnl's message: %s\n", nl_geterror(error));
nl_socket_free(sk);
return error;
}
int wait_for_kernel_message(void)
{
int error;
printf("Waiting for kernel request...\n");
error = nl_recvmsgs_default(sk);
if (error < 0) {
printf("nl_send_simple() threw errcode %d.\n", error);
printf("libnl's message: %s\n", nl_geterror(error));
return error;
}
return 0;
}
void destroy_socket(void)
{
nl_socket_free(sk);
}
int main(int argc, char *argv[])
{
int error;
error = prepare_socket();
if (error)
return error;
error = wait_for_kernel_message();
destroy_socket();
return error;
}
在内核3.2上测试过。 (对不起,这是我现在最低的。)
答案 1 :(得分:0)
这是一个没有libnl的例子 我把所有函数都放在一个文件中。编码风格不好。这只是一个例子 我希望它对你有所帮助。
我在Ubuntu 15.04中测试了代码,其核心是内核3.19.0-15。
内核模块#include <linux/kernel.h>
#include <linux/module.h>
#include <net/genetlink.h>
static struct timer_list timer;
/* Code based on http://stackoverflow.com/questions/26265453/netlink-multicast-kernel-group/33578010#33578010 */
/**
* This callback runs whenever the socket receives messages.
* We don't use it now, but Linux complains if we don't define it.
*/
static int hello(struct sk_buff *skb, struct genl_info *info)
{
pr_info("Received a message in kernelspace.\n");
return 0;
}
/**
* Attributes are fields of data your messages will contain.
* The designers of Netlink really want you to use these instead of just dumping
* data to the packet payload... and I have really mixed feelings about it.
*/
enum attributes {
/*
* The first one has to be a throwaway empty attribute; I don't know
* why.
* If you remove it, ATTR_HELLO (the first one) stops working, because
* it then becomes the throwaway.
*/
ATTR_DUMMY,
ATTR_HELLO,
ATTR_FOO,
/* This must be last! */
__ATTR_MAX,
};
/**
* Here you can define some constraints for the attributes so Linux will
* validate them for you.
*/
static struct nla_policy policies[] = {
[ATTR_HELLO] = { .type = NLA_STRING, },
[ATTR_FOO] = { .type = NLA_U32, },
};
/**
* Message type codes. All you need is a hello sorta function, so that's what
* I'm defining.
*/
enum commands {
COMMAND_HELLO,
/* This must be last! */
__COMMAND_MAX,
};
/**
* Actual message type definition.
*/
struct genl_ops ops[] = {
{
.cmd = COMMAND_HELLO,
.flags = 0,
.policy = policies,
.doit = hello,
.dumpit = NULL,
},
};
/**
* A Generic Netlink family is a group of listeners who can and want to speak
* your language.
* Anyone who wants to hear your messages needs to register to the same family
* as you.
*/
struct genl_family family = {
.id = GENL_ID_GENERATE,
.hdrsize = 0,
.name = "PotatoFamily",
.version = 1,
.maxattr = __ATTR_MAX,
};
/**
* And more specifically, anyone who wants to hear messages you throw at
* specific multicast groups need to register themselves to the same multicast
* group, too.
*/
struct genl_multicast_group groups[] = {
{ .name = "PotatoGroup" },
};
void send_multicast(unsigned long arg)
{
struct sk_buff *skb;
void *msg_head;
unsigned char *msg = "TEST";
int error;
pr_info("----- Running timer -----\n");
pr_info("Newing message.\n");
skb = genlmsg_new(NLMSG_GOODSIZE, GFP_KERNEL);
if (!skb) {
pr_err("genlmsg_new() failed.\n");
goto end;
}
pr_info("Putting message.\n");
msg_head = genlmsg_put(skb, 0, 0, &family, 0, COMMAND_HELLO);
if (!msg_head) {
pr_err("genlmsg_put() failed.\n");
kfree_skb(skb);
goto end;
}
pr_info("Nla_putting string.\n");
error = nla_put_string(skb, ATTR_HELLO, msg);
if (error) {
pr_err("nla_put_string() failed: %d\n", error);
kfree_skb(skb);
goto end;
}
pr_info("Nla_putting integer.\n");
error = nla_put_u32(skb, ATTR_FOO, 12345);
if (error) {
pr_err("nla_put_u32() failed: %d\n", error);
kfree_skb(skb);
goto end;
}
pr_info("Ending message.\n");
genlmsg_end(skb, msg_head);
pr_info("Multicasting message.\n");
/*
* The family has only one group, so the group ID is just the family's
* group offset.
* mcgrp_offset is supposed to be private, so use this value for debug
* purposes only.
*/
pr_info("The group ID is %u.\n", family.mcgrp_offset);
error = genlmsg_multicast_allns(&family, skb, 0, 0, GFP_KERNEL);
if (error) {
pr_err("genlmsg_multicast_allns() failed: %d\n", error);
pr_err("(This can happen if nobody is listening. "
"Because it's not that unexpected, "
"you might want to just ignore this error.)\n");
goto end;
}
pr_info("Success.\n");
end:
mod_timer(&timer, jiffies + msecs_to_jiffies(2000));
}
static int init_socket(void)
{
int error;
pr_info("Registering family.\n");
error = genl_register_family_with_ops_groups(&family, ops, groups);
if (error)
pr_err("Family registration failed: %d\n", error);
return error;
}
static void initialize_timer(void)
{
pr_info("Starting timer.\n");
init_timer(&timer);
timer.function = send_multicast;
timer.expires = 0;
timer.data = 0;
mod_timer(&timer, jiffies + msecs_to_jiffies(2000));
}
static int __init hello_init(void)
{
int error;
error = init_socket();
if (error)
return error;
initialize_timer();
pr_info("Hello module registered.\n");
return 0;
}
static void __exit hello_exit(void)
{
del_timer_sync(&timer);
genl_unregister_family(&family);
pr_info("Hello removed.\n");
}
module_init(hello_init);
module_exit(hello_exit);
MODULE_LICENSE("GPL");
内核模块Makefile
PWD := $(shell pwd)
KVERSION := $(shell uname -r)
KERNEL_DIR = /usr/src/linux-headers-$(KVERSION)/
MODULE_NAME = genl_kern_grp
obj-m := $(MODULE_NAME).o
all:
make -C $(KERNEL_DIR) M=$(PWD) modules
clean:
make -C $(KERNEL_DIR) M=$(PWD) clean
用户代码 - main.c
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <errno.h>
#include <unistd.h>
#include <poll.h>
#include <string.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <signal.h>
#include <linux/genetlink.h>
/* Code based on libnl-3 */
/* Code based on http://stackoverflow.com/questions/26265453/netlink-multicast-kernel-group/33578010#33578010 */
/* Code based on http://www.electronicsfaq.com/2014/02/generic-netlink-sockets-example-code.html */
/* Code based on http://people.ee.ethz.ch/~arkeller/linux/multi/kernel_user_space_howto-3.html */
/* Based on libnl-3 attr.h */
/**
* @ingroup attr
* Basic attribute data types
*
* See section @core_doc{core_attr_parse,Attribute Parsing} for more details.
*/
enum {
NLA_UNSPEC, /**< Unspecified type, binary data chunk */
NLA_U8, /**< 8 bit integer */
NLA_U16, /**< 16 bit integer */
NLA_U32, /**< 32 bit integer */
NLA_U64, /**< 64 bit integer */
NLA_STRING, /**< NUL terminated character string */
NLA_FLAG, /**< Flag */
NLA_MSECS, /**< Micro seconds (64bit) */
NLA_NESTED, /**< Nested attributes */
NLA_NESTED_COMPAT,
NLA_NUL_STRING,
NLA_BINARY,
NLA_S8,
NLA_S16,
NLA_S32,
NLA_S64,
__NLA_TYPE_MAX,
};
#define NLA_TYPE_MAX (__NLA_TYPE_MAX - 1)
/**
* @ingroup attr
* Attribute validation policy.
*
* See section @core_doc{core_attr_parse,Attribute Parsing} for more details.
*/
struct nla_policy {
/** Type of attribute or NLA_UNSPEC */
uint16_t type;
/** Minimal length of payload required */
uint16_t minlen;
/** Maximal length of payload allowed */
uint16_t maxlen;
};
/**
* Attributes and commands have to be the same as in kernelspace, so you might
* want to move these enums to a .h and just #include that from both files.
*/
enum attributes {
ATTR_DUMMY,
ATTR_HELLO,
ATTR_FOO,
/* This must be last! */
__ATTR_MAX,
};
enum commands {
COMMAND_HELLO,
/* This must be last! */
__COMMAND_MAX,
};
/* Generic macros for dealing with netlink sockets. Might be duplicated
* elsewhere. It is recommended that commercial grade applications use
* libnl or libnetlink and use the interfaces provided by the library
*/
#define GENLMSG_DATA(glh) ((void *)(NLMSG_DATA(glh) + GENL_HDRLEN))
#define GENLMSG_PAYLOAD(glh) (NLMSG_PAYLOAD(glh, 0) - GENL_HDRLEN)
#define NLA_DATA(na) ((void *)((char*)(na) + NLA_HDRLEN))
/* Family string */
#define GEN_FAMILY_STR "PotatoFamily"
#define GEN_ML_GRP_STR "PotatoGroup"
/* SOL_NETLINK is only defined in <kernel src>/include/linux/socket.h
* It is not defined in <kernel src>/include/uapi/linux/socket.h
* Thus, copy the define to here if we don't include kernel header
*/
#ifndef SOL_NETLINK
#define SOL_NETLINK 270
#endif
/**
* @ingroup attr
* Iterate over a stream of attributes
* @arg pos loop counter, set to current attribute
* @arg head head of attribute stream
* @arg len length of attribute stream
* @arg rem initialized to len, holds bytes currently remaining in stream
*/
#define nla_for_each_attr(pos, head, len, rem) \
for (pos = head, rem = len; \
nla_ok(pos, rem); \
pos = nla_next(pos, &(rem)))
/**
* @ingroup attr
* Iterate over a stream of nested attributes
* @arg pos loop counter, set to current attribute
* @arg nla attribute containing the nested attributes
* @arg rem initialized to len, holds bytes currently remaining in stream
*/
#define nla_for_each_nested(pos, nla, rem) \
for (pos = nla_data(nla), rem = nla_len(nla); \
nla_ok(pos, rem); \
pos = nla_next(pos, &(rem)))
/* Variables used for netlink */
int nl_fd; /* netlink socket's file descriptor */
struct sockaddr_nl nl_address; /* netlink socket address */
int nl_family_id; /* The family ID resolved by the netlink controller for this userspace program */
int nl_rxtx_length; /* Number of bytes sent or received via send() or recv() */
struct nlattr *nl_na; /* pointer to netlink attributes structure within the payload */
struct { /* memory for netlink request and response messages - headers are included */
struct nlmsghdr n;
struct genlmsghdr g;
char buf[256];
} nl_request_msg, nl_response_msg;
/* Base on libnl-3 attr.c */
/**
* Return type of the attribute.
* @arg nla Attribute.
*
* @return Type of attribute.
*/
int nla_type(const struct nlattr *nla)
{
return nla->nla_type & NLA_TYPE_MASK;
}
/**
* Return pointer to the payload section.
* @arg nla Attribute.
*
* @return Pointer to start of payload section.
*/
void *nla_data(const struct nlattr *nla)
{
return (char *) nla + NLA_HDRLEN;
}
/**
* Return length of the payload .
* @arg nla Attribute
*
* @return Length of payload in bytes.
*/
int nla_len(const struct nlattr *nla)
{
return nla->nla_len - NLA_HDRLEN;
}
/**
* Check if the attribute header and payload can be accessed safely.
* @arg nla Attribute of any kind.
* @arg remaining Number of bytes remaining in attribute stream.
*
* Verifies that the header and payload do not exceed the number of
* bytes left in the attribute stream. This function must be called
* before access the attribute header or payload when iterating over
* the attribute stream using nla_next().
*
* @return True if the attribute can be accessed safely, false otherwise.
*/
int nla_ok(const struct nlattr *nla, int remaining)
{
return remaining >= sizeof(*nla) &&
nla->nla_len >= sizeof(*nla) &&
nla->nla_len <= remaining;
}
/**
* Return next attribute in a stream of attributes.
* @arg nla Attribute of any kind.
* @arg remaining Variable to count remaining bytes in stream.
*
* Calculates the offset to the next attribute based on the attribute
* given. The attribute provided is assumed to be accessible, the
* caller is responsible to use nla_ok() beforehand. The offset (length
* of specified attribute including padding) is then subtracted from
* the remaining bytes variable and a pointer to the next attribute is
* returned.
*
* nla_next() can be called as long as remainig is >0.
*
* @return Pointer to next attribute.
*/
struct nlattr *nla_next(const struct nlattr *nla, int *remaining)
{
int totlen = NLA_ALIGN(nla->nla_len);
*remaining -= totlen;
return (struct nlattr *) ((char *) nla + totlen);
}
static uint16_t nla_attr_minlen[NLA_TYPE_MAX+1] = {
[NLA_U8] = sizeof(uint8_t),
[NLA_U16] = sizeof(uint16_t),
[NLA_U32] = sizeof(uint32_t),
[NLA_U64] = sizeof(uint64_t),
[NLA_STRING] = 1,
[NLA_FLAG] = 0,
};
static int validate_nla(const struct nlattr *nla, int maxtype,
const struct nla_policy *policy)
{
const struct nla_policy *pt;
unsigned int minlen = 0;
int type = nla_type(nla);
if (type < 0 || type > maxtype)
return 0;
pt = &policy[type];
if (pt->type > NLA_TYPE_MAX)
return -1;
if (pt->minlen)
minlen = pt->minlen;
else if (pt->type != NLA_UNSPEC)
minlen = nla_attr_minlen[pt->type];
if (nla_len(nla) < minlen)
return -2;
if (pt->maxlen && nla_len(nla) > pt->maxlen)
return -3;
if (pt->type == NLA_STRING) {
const char *data = nla_data(nla);
if (data[nla_len(nla) - 1] != '\0')
return -4;
}
return 0;
}
/**
* Create attribute index based on a stream of attributes.
* @arg tb Index array to be filled (maxtype+1 elements).
* @arg maxtype Maximum attribute type expected and accepted.
* @arg head Head of attribute stream.
* @arg len Length of attribute stream.
* @arg policy Attribute validation policy.
*
* Iterates over the stream of attributes and stores a pointer to each
* attribute in the index array using the attribute type as index to
* the array. Attribute with a type greater than the maximum type
* specified will be silently ignored in order to maintain backwards
* compatibility. If \a policy is not NULL, the attribute will be
* validated using the specified policy.
*
* @see nla_validate
* @return 0 on success or a negative error code.
*/
int nla_parse(struct nlattr *tb[], int maxtype, struct nlattr *head, int len,
struct nla_policy *policy)
{
struct nlattr *nla;
int rem, err;
memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1));
nla_for_each_attr(nla, head, len, rem) {
int type = nla_type(nla);
if (type > maxtype)
continue;
if (policy) {
err = validate_nla(nla, maxtype, policy);
if (err < 0)
goto errout;
}
if (tb[type])
fprintf(stderr, "Attribute of type %#x found multiple times in message, "
"previous attribute is being ignored.\n", type);
tb[type] = nla;
}
if (rem > 0)
fprintf(stderr, "netlink: %d bytes leftover after parsing "
"attributes.\n", rem);
err = 0;
errout:
return err;
}
/**
* Create attribute index based on nested attribute
* @arg tb Index array to be filled (maxtype+1 elements).
* @arg maxtype Maximum attribute type expected and accepted.
* @arg nla Nested Attribute.
* @arg policy Attribute validation policy.
*
* Feeds the stream of attributes nested into the specified attribute
* to nla_parse().
*
* @see nla_parse
* @return 0 on success or a negative error code.
*/
int nla_parse_nested(struct nlattr *tb[], int maxtype, struct nlattr *nla,
struct nla_policy *policy)
{
return nla_parse(tb, maxtype, nla_data(nla), nla_len(nla), policy);
}
static struct nla_policy ctrl_policy[CTRL_ATTR_MAX+1] = {
[CTRL_ATTR_FAMILY_ID] = { .type = NLA_U16 },
[CTRL_ATTR_FAMILY_NAME] = { .type = NLA_STRING,
.maxlen = GENL_NAMSIZ },
[CTRL_ATTR_VERSION] = { .type = NLA_U32 },
[CTRL_ATTR_HDRSIZE] = { .type = NLA_U32 },
[CTRL_ATTR_MAXATTR] = { .type = NLA_U32 },
[CTRL_ATTR_OPS] = { .type = NLA_NESTED },
[CTRL_ATTR_MCAST_GROUPS] = { .type = NLA_NESTED },
};
static struct nla_policy family_grp_policy[CTRL_ATTR_MCAST_GRP_MAX+1] = {
[CTRL_ATTR_MCAST_GRP_NAME] = { .type = NLA_STRING },
[CTRL_ATTR_MCAST_GRP_ID] = { .type = NLA_U32 },
};
int genlctrl_msg_parse(struct nlmsghdr *nlh, int *family_id, char **family_name,
int *mcast_id, char **mcast_name)
{
struct nlattr *tb[CTRL_ATTR_MAX+1];
struct nlattr *nla_hdr;
int nla_length;
int ret = 0;
nla_hdr = (struct nlattr *)((unsigned char *) nlh + NLMSG_HDRLEN + GENL_HDRLEN);
nla_length = nlh->nlmsg_len - GENL_HDRLEN - NLMSG_HDRLEN;
if(ret = nla_parse(tb, CTRL_ATTR_MAX, nla_hdr, nla_length, ctrl_policy)) {
fprintf(stderr, "nla_parse error! ret = %d\n", ret);
return -1;
}
if (tb[CTRL_ATTR_FAMILY_ID])
*family_id = *(const uint16_t *) nla_data(tb[CTRL_ATTR_FAMILY_ID]);
if (tb[CTRL_ATTR_FAMILY_NAME])
*family_name = (char *) nla_data(tb[CTRL_ATTR_FAMILY_NAME]);
if (tb[CTRL_ATTR_MCAST_GROUPS]) {
struct nlattr *nla, *grp_attr;
int remaining, err;
grp_attr = tb[CTRL_ATTR_MCAST_GROUPS];
nla_for_each_nested(nla, grp_attr, remaining) {
struct nlattr *tb[CTRL_ATTR_MCAST_GRP_MAX+1];
int id = 0;
char *name = NULL;
err = nla_parse_nested(tb, CTRL_ATTR_MCAST_GRP_MAX, nla,
family_grp_policy);
if (err < 0) {
fprintf(stderr, "nla_parse_nested error! err = %d\n", err);
return -1;
}
if (tb[CTRL_ATTR_MCAST_GRP_ID])
id = *(const uint32_t *) nla_data(tb[CTRL_ATTR_MCAST_GRP_ID]);
if (tb[CTRL_ATTR_MCAST_GRP_NAME])
name = (char *) nla_data(tb[CTRL_ATTR_MCAST_GRP_NAME]);
if (id || name) {
*mcast_id = id;
*mcast_name = name;
}
}
}
return 0;
}
void genlmsg_recv(void) {
struct nlmsghdr *nlh;
struct nlattr *tb[__ATTR_MAX];
struct nlattr *nla_hdr;
int nla_length;
int ret = 0;
while(1)
{
memset(&nl_response_msg, 0, sizeof(nl_response_msg));
nl_rxtx_length = recv(nl_fd, &nl_response_msg, sizeof(nl_response_msg), 0);
if (nl_rxtx_length < 0) {
perror("recv()");
goto out;
}
nlh = &nl_response_msg.n;
nla_hdr = (struct nlattr *)((unsigned char *) nlh + NLMSG_HDRLEN + GENL_HDRLEN);
nla_length = nlh->nlmsg_len - GENL_HDRLEN - NLMSG_HDRLEN;
if(ret = nla_parse(tb, __ATTR_MAX-1, nla_hdr, nla_length, NULL)) {
fprintf(stderr, "nla_parse error! ret = %d\n", ret);
goto out;
}
if (tb[1])
printf("ATTR_HELLO: len:%u type:%u data:%s\n", tb[1]->nla_len,
tb[1]->nla_type, (char *)nla_data(tb[1]));
else
printf("ATTR_HELLO: null\n");
if (tb[2])
printf("ATTR_FOO: len:%u type:%u data:%u\n", tb[2]->nla_len,
tb[2]->nla_type, *((__u32 *)nla_data(tb[2])));
else
printf("ATTR_FOO: null\n");
}
out:
return;
}
int main(void) {
struct nlattr *nla1, *nla2;
int len, rem, remaining;
struct nlmsghdr *nlh;
int family_id;
char *family_name;
int mcast_id;
char *mcast_name;
int err;
/* Step 1: Open the socket. Note that protocol = NETLINK_GENERIC */
nl_fd = socket(AF_NETLINK, SOCK_RAW, NETLINK_GENERIC);
if (nl_fd < 0) {
perror("socket()");
return -1;
}
/* Step 2: Bind the socket. */
memset(&nl_address, 0, sizeof(nl_address));
nl_address.nl_family = AF_NETLINK;
nl_address.nl_groups = 0;
if (bind(nl_fd, (struct sockaddr *) &nl_address, sizeof(nl_address)) < 0) {
perror("bind()");
goto out;
}
/* Step 3: Resolve the family ID corresponding to the string GEN_FAMILY_STR */
/* Populate the netlink header */
nl_request_msg.n.nlmsg_type = GENL_ID_CTRL;
nl_request_msg.n.nlmsg_flags = NLM_F_REQUEST;
nl_request_msg.n.nlmsg_seq = 0;
nl_request_msg.n.nlmsg_pid = getpid();
nl_request_msg.n.nlmsg_len = NLMSG_LENGTH(GENL_HDRLEN);
/* Populate the payload's "family header" : which in our case is genlmsghdr */
nl_request_msg.g.cmd = CTRL_CMD_GETFAMILY;
nl_request_msg.g.version = 0x1;
/* Populate the payload's "netlink attributes" */
nl_na = (struct nlattr *) GENLMSG_DATA(&nl_request_msg); /* get location of genl data where to put */
nl_na->nla_type = CTRL_ATTR_FAMILY_NAME;
nl_na->nla_len = strlen(GEN_FAMILY_STR) + 1 + NLA_HDRLEN;
strcpy(NLA_DATA(nl_na), GEN_FAMILY_STR); /* Family name length can be upto 16 chars including \0 */
nl_request_msg.n.nlmsg_len += NLMSG_ALIGN(nl_na->nla_len);
memset(&nl_address, 0, sizeof(nl_address));
nl_address.nl_family = AF_NETLINK;
/* Send the family ID request message to the netlink controller */
nl_rxtx_length = sendto(nl_fd, (char *) &nl_request_msg, nl_request_msg.n.nlmsg_len,
0, (struct sockaddr *) &nl_address, sizeof(nl_address));
if (nl_rxtx_length != nl_request_msg.n.nlmsg_len) {
perror("sendto()");
goto out;
}
/* Wait for the response message */
nl_rxtx_length = recv(nl_fd, &nl_response_msg, sizeof(nl_response_msg), 0);
if (nl_rxtx_length < 0) {
perror("recv()");
goto out;
}
/* Validate response message */
if (!NLMSG_OK((&nl_response_msg.n), nl_rxtx_length)) {
fprintf(stderr, "family ID request : invalid message\n");
goto out;
}
if (nl_response_msg.n.nlmsg_type == NLMSG_ERROR) { /* error */
fprintf(stderr, "family ID request : receive error\n");
goto out;
}
/* Step 4: Extract family ID and mcast group ID*/
nlh = &nl_response_msg.n;
genlctrl_msg_parse(nlh, &family_id, &family_name, &mcast_id, &mcast_name);
printf("[INFO] family_id = %d, family_name = %s\n", family_id, family_name);
printf("[INFO] mcast_id = %d, mcast_name = %s\n", mcast_id, mcast_name);
/* Step 5: Add to mulitcast group */
err = setsockopt(nl_fd, SOL_NETLINK, NETLINK_ADD_MEMBERSHIP, &mcast_id, sizeof(mcast_id));
if (err < 0) {
perror ("setsockopt()");
goto out;
}
/* Step 6: Receive multicast data */
genlmsg_recv();
/* Step 7: Close the socket and quit */
close(nl_fd);
return 0;
out:
close(nl_fd);
return -1;
}
用户代码Makefile
PWD := $(shell pwd)
TARGET := genl_ml
SRC := main.c
HDR_DIR = /usr/include/
LDFLAGS =
all:
gcc $(SRC) $(LDFLAGS) -o $(TARGET)
clean:
rm -fr $(TARGET)