我无法计算0< = number< 1的sqrt

时间:2016-01-29 16:49:08

标签: c sqrt

我编写了一个程序来计算sqrt(x)的估计值:

以下代码说明

我正在尝试找到最接近的数字(S)到(x),可以表示为 S = sqrt * sqrt ,保持循环直到fabs(_sqrt - sqrt) >= 1e-8不正确,这意味着那个sqrt和_sqrt非常接近。

#include <stdio.h>
#include <stdlib.h>

int main (int argc, char *argv[]) {
    double val, min, max; 
    double sqrt;
    double S, _sqrt;
    int cnt = 0;

    // enter an argument,

    if (argc < 2) {
        printf ("Usage: sqrt < number >\n");
        return 1;
    }
     val = fabs (atof (argv[1]));
        min = 0;//minimum 
        max = sqrt = val;//maximum 
        _sqrt = 1;
        //1e-8 = 10^(-8) = 0.00000001
        while (fabs(_sqrt - sqrt) >= 1e-8) {
            _sqrt = sqrt;//keep the old sqrt
            sqrt = (max + min) / 2;
            S = sqrt * sqrt;
            printf("test n(%d)\tsqrt(%lf) = %.6lf\n",++cnt,val, sqrt);
                if (S>val){
                    max = sqrt;//setting max to the current sqrt
                } else{
                    min = sqrt;//setting min to the current sqrt
                }//end else
        }//end while
        puts("");
        puts("\t====================================================");
        printf ("\tfinal value.\tsqrt(%lf) = %.6lf\n", val, sqrt);
        puts("\t====================================================");
    return 0;
}//end main()

输出

[ar.lnx@host square-root] $ ./sqrt 2        
test n(1)       sqrt(2.000000) = 1.000000
test n(2)       sqrt(2.000000) = 1.500000
test n(3)       sqrt(2.000000) = 1.250000
test n(4)       sqrt(2.000000) = 1.375000
test n(5)       sqrt(2.000000) = 1.437500
test n(6)       sqrt(2.000000) = 1.406250
test n(7)       sqrt(2.000000) = 1.421875
test n(8)       sqrt(2.000000) = 1.414062
test n(9)       sqrt(2.000000) = 1.417969
test n(10)      sqrt(2.000000) = 1.416016
test n(11)      sqrt(2.000000) = 1.415039
test n(12)      sqrt(2.000000) = 1.414551
test n(13)      sqrt(2.000000) = 1.414307
test n(14)      sqrt(2.000000) = 1.414185
test n(15)      sqrt(2.000000) = 1.414246
test n(16)      sqrt(2.000000) = 1.414215
test n(17)      sqrt(2.000000) = 1.414200
test n(18)      sqrt(2.000000) = 1.414207
test n(19)      sqrt(2.000000) = 1.414211
test n(20)      sqrt(2.000000) = 1.414213
test n(21)      sqrt(2.000000) = 1.414214
test n(22)      sqrt(2.000000) = 1.414214
test n(23)      sqrt(2.000000) = 1.414213
test n(24)      sqrt(2.000000) = 1.414214
test n(25)      sqrt(2.000000) = 1.414214
test n(26)      sqrt(2.000000) = 1.414214
test n(27)      sqrt(2.000000) = 1.414214
test n(28)      sqrt(2.000000) = 1.414214

        ====================================================
        final value.    sqrt(2.000000) = 1.414214
        ====================================================

但它只适用于每个x&gt; = 1,如果我想计算0.5或0.254或0.1的sqrt ......它不起作用!

[ar.lnx@host square-root] $ ./sqrt1 0.5
test n(1)       sqrt(0.500000) = 0.250000
test n(2)       sqrt(0.500000) = 0.375000
test n(3)       sqrt(0.500000) = 0.437500
test n(4)       sqrt(0.500000) = 0.468750
test n(5)       sqrt(0.500000) = 0.484375
test n(6)       sqrt(0.500000) = 0.492188
test n(7)       sqrt(0.500000) = 0.496094
test n(8)       sqrt(0.500000) = 0.498047
test n(9)       sqrt(0.500000) = 0.499023
test n(10)      sqrt(0.500000) = 0.499512
test n(11)      sqrt(0.500000) = 0.499756
test n(12)      sqrt(0.500000) = 0.499878
test n(13)      sqrt(0.500000) = 0.499939
test n(14)      sqrt(0.500000) = 0.499969
test n(15)      sqrt(0.500000) = 0.499985
test n(16)      sqrt(0.500000) = 0.499992
test n(17)      sqrt(0.500000) = 0.499996
test n(18)      sqrt(0.500000) = 0.499998
test n(19)      sqrt(0.500000) = 0.499999
test n(20)      sqrt(0.500000) = 0.500000
test n(21)      sqrt(0.500000) = 0.500000
test n(22)      sqrt(0.500000) = 0.500000
test n(23)      sqrt(0.500000) = 0.500000
test n(24)      sqrt(0.500000) = 0.500000
test n(25)      sqrt(0.500000) = 0.500000
test n(26)      sqrt(0.500000) = 0.500000

        ====================================================
        final value.    sqrt(0.500000) = 0.500000
        ====================================================

有人可以帮我理解问题是什么以及如何解决它?

3 个答案:

答案 0 :(得分:4)

问题是您正在将max初始化为val。对于小于1的数字,平方根将更大而不是更少。例如,对于0.5,平方根为0.707 ...如果max小于1,则简单的修复方法是将val初始化为1.

答案 1 :(得分:3)

原因是您的转化逻辑仅在val > 1

时有效

请注意您对sqrt(.5)进行测试的方式自val == 0.5 S = val * val 0.25min。这会将0.25重置为sqrt = (max + min) / 2;,因为max和初始val0.5(0.5),您永远无法超越val

您必须确定,因为您的初始max小于1,您希望您的初始val < sqrt < 1为1,以便您的平均值为1.5/2 == .75

如果你这样做,那么你应该收集正确的值。

我目前无法访问C编译器。但是,通过初始检查,第一个平均值为1.25/2 == .625,它会重置最大值。新的平均值为public static final char blank = ' '; public static final char endOfSequence = '\n'; //the lines in the file end with '\n' private static final int MAX = 20; public static char[] letters; public static int length; private static char letter = ' '; private static char[] phrase = null; private static int index; public Word() { letters = new char[MAX]; length = 0; } public static Word read() { Word wd = new Word(); jumpBlanks(); while ((letter != endOfSequence) && // Sequence hasn't finished (letter != blank)) { wd.letters[wd.length] = letter; letter = readCharKeyB(); } return wd; } public static void jumpBlanks() { //reading blanks until finding a word while (letter == blank) { letter = readCharKeyB(); } } static public char readCharKeyB() { char res = '.'; if (phrase != null) { res = phrase[index++]; } return res; } ,它会重置最小值。然后您应该继续,直到收敛到正确的值。

仅供参考,您还可以将while循环的内容用作不同的函数,以便自学递归。也就是说,如果S> 1,则不是循环一段时间。 lim {调用新的估计函数}一旦它通过递归,它将最终估计值传递回初始调用函数。

答案 2 :(得分:2)

问题是你的max的价值,它必须大于或等于预期的结果。如果您的输入小于1.0,则结果大于输入且小于1.0。您max的价值必须至少为1.0。像这样调整你的代码。

#include <stdio.h>
#include <stdlib.h>

int main (int argc, char *argv[]) {
    double val, min, max; 
    double sqrt;
    double S, _sqrt;
    int cnt = 0;

    // enter an argument,

    if (argc < 2) {
        printf ("Usage: sqrt < number >\n");
        return 1;
    }
    val = fabs (atof (argv[1]));       

    if ( val < 1.0 )
    {
        min = val;        
        max = sqrt = 1.0; // if val < 1.0 result is greater than val but less than 1.0
    }
    else
    {
        min = 0;          //minimum 
        max = sqrt = val; //maximum
    } 

    do
    {
        _sqrt = sqrt;//keep the old sqrt
        sqrt = (max + min) / 2;
        S = sqrt * sqrt;
        printf("test n(%d)\tsqrt(%lf) = %.6lf\n",++cnt,val, sqrt);
        if (S>val){
            max = sqrt;//setting max to the current sqrt
        } else{
            min = sqrt;//setting min to the current sqrt
        }//end else
    }
    while ( fabs(_sqrt - sqrt) >= 1e-8); //1e-8 = 10^(-8) = 0.00000001

    puts("");
    puts("\t====================================================");
    printf ("\tfinal value.\tsqrt(%lf) = %.6lf\n", val, sqrt);
    puts("\t====================================================");
    return 0;
}