如何进行data.table滚动连接?

时间:2016-01-27 19:19:39

标签: r data.table

我正在尝试合并两个数据表。一个是公司市场价值随时间变化的数据,另一个是公司股息历史。我试图找出每个公司每个季度支付了多少钱,然后将这个价值放在市场价值数据旁边。

library(magrittr)
library(data.table)
library(zoo)
library(lubridate)

set.seed(1337)
# data table of company  market values
companies <- 
    data.table(companyID = 1:10,
               Sedol = rep(c("91772E", "7A662B"), each = 5),
               Date = (as.Date("2005-04-01") + months(seq(0, 12, 3))) - days(1),
               MktCap = c(100 + cumsum(rnorm(5,5)),
                          50 + cumsum(rnorm(5,1,5)))) %>%
    setkey(Sedol, Date)

# data table of dividends
dividends <- 
    data.table(DivID = 1:7,
               Sedol = c(rep('91772E', each = 4), rep('7A662B', each = 3)),
               Date = as.Date(c('2004-11-19', '2005-01-13', '2005-01-29',
                                '2005-10-01', '2005-06-29', '2005-06-30',
                                '2006-04-17')),
               DivAmnt = rnorm(7, .8, .3)) %>%
    setkey(Sedol, Date)

我相信这是一种可以使用data.table滚动连接的情况,例如:

dividends[companies, roll = "nearest"]

尝试获取看起来像

的数据集
       DivID  Sedol       Date   DivAmnt companyID    MktCap
    1:    NA 7A662B       <NA>        NA         6  61.21061
    2:     5 7A662B 2005-06-29 0.7772631         7  66.92951
    3:     6 7A662B 2005-06-30 1.1815343         7  66.92951
    4:    NA 7A662B       <NA>        NA         8  78.33914
    5:    NA 7A662B       <NA>        NA         9  88.92473
    6:    NA 7A662B       <NA>        NA        10  87.85067
    7:     2 91772E 2005-01-13 0.2964291         1 105.19249
    8:     3 91772E 2005-01-29 0.8472649         1 105.19249
    9:    NA 91772E       <NA>        NA         2 108.74579
   10:     4 91772E 2005-10-01 1.2467408         3 113.42261
   11:    NA 91772E       <NA>        NA         4 120.04491
   12:    NA 91772E       <NA>        NA         5 124.35588

(请注意,我已按照确切的季度将股息与公司市场价值进行匹配)

但我不确定如何执行它。如果roll是一个值,那么CRAN pdf对于数字是什么或应该是什么应该是相当模糊的(你能否传递日期?数字是否可以量化前进天数?obersvations的数量?)并更改{{1周围似乎没有得到我想要的东西。

最后,我最终将股息日期映射到季度末,然后加入。一个很好的解决方案,但如果我最终需要知道如何执行滚动连接,则无用。在你的回答中,你能描述一种情况,滚动连接是唯一的解决方案,并帮助我理解如何执行它们吗?

1 个答案:

答案 0 :(得分:5)

您可能希望使用enter image description herefoverlaps函数重叠连接,而不是滚动连接:

# create an interval in the 'companies' datatable
companies[, `:=` (start = compDate - days(90), end = compDate + days(15))]
# create a second date in the 'dividends' datatable
dividends[, Date2 := divDate]

# set the keys for the two datatable
setkey(companies, Sedol, start, end)
setkey(dividends, Sedol, divDate, Date2)

# create a vector of columnnames which can be removed afterwards
deletecols <- c("Date2","start","end")

# perform the overlap join and remove the helper columns
res <- foverlaps(companies, dividends)[, (deletecols) := NULL]

结果:

> res
     Sedol DivID    divDate   DivAmnt companyID   compDate    MktCap
 1: 7A662B    NA       <NA>        NA         6 2005-03-31  61.21061
 2: 7A662B     5 2005-06-29 0.7772631         7 2005-06-30  66.92951
 3: 7A662B     6 2005-06-30 1.1815343         7 2005-06-30  66.92951
 4: 7A662B    NA       <NA>        NA         8 2005-09-30  78.33914
 5: 7A662B    NA       <NA>        NA         9 2005-12-31  88.92473
 6: 7A662B    NA       <NA>        NA        10 2006-03-31  87.85067
 7: 91772E     2 2005-01-13 0.2964291         1 2005-03-31 105.19249
 8: 91772E     3 2005-01-29 0.8472649         1 2005-03-31 105.19249
 9: 91772E    NA       <NA>        NA         2 2005-06-30 108.74579
10: 91772E     4 2005-10-01 1.2467408         3 2005-09-30 113.42261
11: 91772E    NA       <NA>        NA         4 2005-12-31 120.04491
12: 91772E    NA       <NA>        NA         5 2006-03-31 124.35588

与此同时,作者引入了非等联接()。您也可以使用它来解决此问题。使用非equi连接只需:

companies[, `:=` (start = compDate - days(90), end = compDate + days(15))]
dividends[companies, on = .(Sedol, divDate >= start, divDate <= end)]

获得预期的结果。

使用过的数据(与问题中的相同,但没有创建密钥):

set.seed(1337)
companies <- data.table(companyID = 1:10, Sedol = rep(c("91772E", "7A662B"), each = 5),
                        compDate = (as.Date("2005-04-01") + months(seq(0, 12, 3))) - days(1),
                        MktCap = c(100 + cumsum(rnorm(5,5)), 50 + cumsum(rnorm(5,1,5))))
dividends <- data.table(DivID = 1:7, Sedol = c(rep('91772E', each = 4), rep('7A662B', each = 3)),
                        divDate = as.Date(c('2004-11-19','2005-01-13','2005-01-29','2005-10-01','2005-06-29','2005-06-30','2006-04-17')),
                        DivAmnt = rnorm(7, .8, .3))