我引用了一个recent, well-answered question,关于时间戳与data.table
的匹配。
给出一组等间距的十分钟间隔:
intervals <- seq(as.POSIXct("2018-01-20 00:00:00", tz = 'America/Los_Angeles'), as.POSIXct("2018-01-20 03:00:00", tz = 'America/Los_Angeles'), by= "10 mins")
以最近的时间间隔匹配time
的数据:
> head(test)
time id amount
312 2018-01-20 00:02:14 PST 1 54.95083
8652 2018-01-20 00:54:41 PST 2 30.55580
13809 2018-01-20 01:19:27 PST 3 90.54592
586 2018-01-20 00:03:35 PST 1 79.76360
9077 2018-01-20 00:56:37 PST 2 75.53564
21546 2018-01-20 02:25:05 PST 3 36.60177
如何仅在test$time
中包含距离最近的给定区间和的5分钟范围内的匹配项,以确保每个区间记录只有一个匹配项(通过{ {1}})?
id
例如,上面的代码会产生意外结果:
setDT(test)[, time := as.POSIXct(time)][]
test[, .SD[.(time = intervals), on = .(time), roll = 'nearest'], by = id]
预期输出将是:
> head(test[, .SD[.(time = intervals), on = .(time), roll = 'nearest'], by = id], n = 10)
id time amount
1: 1 2018-01-20 00:00:00 0.8615881
2: 1 2018-01-20 00:10:00 0.8615881
3: 1 2018-01-20 00:20:00 0.8615881
4: 1 2018-01-20 00:30:00 0.8615881
5: 1 2018-01-20 00:40:00 0.8615881
6: 1 2018-01-20 00:50:00 0.8615881
7: 1 2018-01-20 01:00:00 0.8615881
8: 1 2018-01-20 01:10:00 0.8615881
9: 1 2018-01-20 01:20:00 0.8615881
10: 1 2018-01-20 01:30:00 0.8615881
请注意,如果 id time amount
1: 1 2018-01-20 00:00:00 54.9508346
2: 1 2018-01-20 00:50:00 12.7618139
3: 1 2018-01-20 01:20:00 34.5093891
4: 1 2018-01-20 03:00:00 0.8615881
5: 2 2018-01-20 00:50:00 30.5557992
6: 2 2018-01-20 01:00:00 75.5356406
7: 2 2018-01-20 01:20:00 72.4465838
8: 2 2018-01-20 01:30:00 49.8718743
9: 2 2018-01-20 02:30:00 69.0175725
10: 3 2018-01-20 00:10:00 81.0468155
11: 3 2018-01-20 01:20:00 90.5459248
12: 3 2018-01-20 01:30:00 85.0054113
13: 3 2018-01-20 02:30:00 36.60177053
中最接近的匹配距离超过5分钟(间隔和测试$时间之间的差异时间> 5分钟),则应在输出中完全排除记录。
如何在intervals
,data.table
或基数R中添加这些条件以匹配预期输出?
有关如何在输出中获得dplyr
与最近匹配区间之间差异的建议也会有所帮助。希望这是有道理的。
test$time
数据如下:
test
答案 0 :(得分:1)
一种可能的解决方案(改编为my previous answer):
ref <- CJ(id = test$id, time = intervals, unique = TRUE)
ref[test
, on = .(id, time)
, roll = 'nearest'
, .(id, time = x.time, amount = i.amount, time_diff = abs(x.time - i.time))
][, .SD[which.min(time_diff)], by = .(id, time)
][order(id, time)][, time_diff := NULL][]
给出了所需的输出:
id time amount 1: 1 2018-01-20 00:00:00 54.9508346 2: 1 2018-01-20 00:50:00 12.7618139 3: 1 2018-01-20 01:20:00 34.5093891 4: 1 2018-01-20 03:00:00 0.8615881 5: 2 2018-01-20 00:50:00 30.5557992 6: 2 2018-01-20 01:00:00 75.5356406 7: 2 2018-01-20 01:20:00 72.4465838 8: 2 2018-01-20 01:30:00 49.8718743 9: 2 2018-01-20 02:30:00 69.0175725 10: 3 2018-01-20 00:10:00 81.0468155 11: 3 2018-01-20 01:20:00 90.5459248 12: 3 2018-01-20 01:30:00 85.0054113 13: 3 2018-01-20 02:30:00 36.6017705
使用过的数据:
test <- structure(list(time = c("2018-01-20 00:02:14 PST", "2018-01-20 00:54:41 PST", "2018-01-20 01:19:27 PST", "2018-01-20 00:03:35 PST", "2018-01-20 00:56:37 PST", "2018-01-20 02:25:05 PST", "2018-01-20 00:47:45 PST", "2018-01-20 01:15:30 PST", "2018-01-20 00:08:01 PST", "2018-01-20 03:04:10 PST", "2018-01-20 01:25:04 PST", "2018-01-20 01:29:30 PST", "2018-01-20 01:23:22 PST", "2018-01-20 02:25:40 PST", "2018-01-20 01:31:32 PST"), id = c(1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3),
amount = c(54.9508346011862, 30.5557992309332, 90.5459248460829, 79.763597343117, 75.5356406327337, 36.6017704829574, 12.7618139144033, 72.4465838400647, 81.0468154959381, 0.861588073894382, 49.8718742514029, 85.0054113194346, 34.5093891490251, 69.0175724914297, 61.8602426256984)),
.Names = c("time", "id", "amount"), row.names = c(312L, 8652L, 13809L, 586L, 9077L, 21546L, 7275L, 12768L, 1172L, 24106L, 14464L, 15344L, 14255L, 21565L, 15602L), class = "data.frame")
intervals <- seq(as.POSIXct("2018-01-20 00:00:00"), as.POSIXct("2018-01-20 03:00:00"), by = "10 mins")
setDT(test)[, time := as.POSIXct(time)][]
注意:我在创建intervals
向量时没有使用时区,因为这为我提供了与test
数据集相同的时区(time := as.POSIXct(time)
将时区设置为CET
我)。